Incorporating a Genetic Algorithm to improve the performance of Variable Neighborhood Search

N. MohammadR.Raeesi, Ziad Kobti
{"title":"Incorporating a Genetic Algorithm to improve the performance of Variable Neighborhood Search","authors":"N. MohammadR.Raeesi, Ziad Kobti","doi":"10.1109/NaBIC.2012.6402253","DOIUrl":null,"url":null,"abstract":"Variable Neighborhood Search (VNS) is an efficient metaheuristics in solving optimization problems. Although VNS has been successfully applied on various problem domains, it suffers from its inefficient search exploration. To improve this limitation, VNS can be joined with a population-based search to benefit from its search exploration. In this article, a Memetic Algorithm (MA) is proposed which is based on a Genetic Algorithm (GA) incorporating VNS as a local search method. To evaluate the proposed method, it has been applied on the classical Job Shop Scheduling Problem (JSSP) as a well-known optimization problem. The experimental results show that the proposed MA outperforms the VNS method. Furthermore, compared to the state-of-the-art Evolutionary Algorithms (EAs) proposed to solve JSSP, the proposed method offers competitive solutions.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Variable Neighborhood Search (VNS) is an efficient metaheuristics in solving optimization problems. Although VNS has been successfully applied on various problem domains, it suffers from its inefficient search exploration. To improve this limitation, VNS can be joined with a population-based search to benefit from its search exploration. In this article, a Memetic Algorithm (MA) is proposed which is based on a Genetic Algorithm (GA) incorporating VNS as a local search method. To evaluate the proposed method, it has been applied on the classical Job Shop Scheduling Problem (JSSP) as a well-known optimization problem. The experimental results show that the proposed MA outperforms the VNS method. Furthermore, compared to the state-of-the-art Evolutionary Algorithms (EAs) proposed to solve JSSP, the proposed method offers competitive solutions.
结合遗传算法提高变邻域搜索性能
变邻域搜索(VNS)是求解优化问题的一种有效的元启发式方法。虽然VNS算法已成功地应用于多个问题领域,但其搜索效率低下。为了改善这一限制,VNS可以与基于人口的搜索相结合,以从其搜索探索中获益。本文提出了一种基于遗传算法的模因算法(Memetic Algorithm, MA),该算法将VNS作为一种局部搜索方法。为了验证该方法的有效性,将其应用于经典的Job Shop调度问题(JSSP)。实验结果表明,该方法优于VNS方法。此外,与解决JSSP的最先进的进化算法(EAs)相比,所提出的方法提供了具有竞争力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信