Unsupervised Singing Voice Separation Using Gammatone Auditory Filterbank and Constraint Robust Principal Component Analysis

Feng Li, M. Akagi
{"title":"Unsupervised Singing Voice Separation Using Gammatone Auditory Filterbank and Constraint Robust Principal Component Analysis","authors":"Feng Li, M. Akagi","doi":"10.23919/APSIPA.2018.8659640","DOIUrl":null,"url":null,"abstract":"This paper presents an unsupervised singing voice separation algorithm which using an extension of robust principal component analysis (RPCA) with rank-1 constraint (CRPCA) based on gammatone auditory filterbank on cochleagram. Unlike the conventional algorithms that focus on spectrogram analysis or its variants, we develop an extension of RPCA on cochleagram using an alternative time-frequency representation based on gammatone auditory filterbank. We also apply time-frequency masking to improve the results of separated low-rank and sparse matrices by using CRPCA method. Evaluation results demonstrate that the proposed algorithm can achieve better separation performance on MIR-IK dataset.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an unsupervised singing voice separation algorithm which using an extension of robust principal component analysis (RPCA) with rank-1 constraint (CRPCA) based on gammatone auditory filterbank on cochleagram. Unlike the conventional algorithms that focus on spectrogram analysis or its variants, we develop an extension of RPCA on cochleagram using an alternative time-frequency representation based on gammatone auditory filterbank. We also apply time-frequency masking to improve the results of separated low-rank and sparse matrices by using CRPCA method. Evaluation results demonstrate that the proposed algorithm can achieve better separation performance on MIR-IK dataset.
基于伽玛酮听觉滤波组和约束鲁棒主成分分析的无监督歌声分离
本文提出了一种基于耳音图上的伽玛酮听觉滤波器库的无监督歌唱语音分离算法,该算法采用了基于秩1约束的鲁棒主成分分析(RPCA)的扩展。与专注于谱图分析或其变体的传统算法不同,我们使用基于伽玛酮听觉滤波器组的替代时频表示,在耳蜗图上开发了RPCA的扩展。我们还利用时频掩蔽来改进CRPCA方法分离低秩矩阵和稀疏矩阵的结果。评估结果表明,该算法在MIR-IK数据集上可以取得较好的分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信