Validation of SplitVector encoding and stereoscopy for quantitative visualization of quantum physics data in virtual environments

Jian Chen, Wesley Griffin, Henan Zhao, J. Terrill, G. Bryant
{"title":"Validation of SplitVector encoding and stereoscopy for quantitative visualization of quantum physics data in virtual environments","authors":"Jian Chen, Wesley Griffin, Henan Zhao, J. Terrill, G. Bryant","doi":"10.1109/VR.2015.7223347","DOIUrl":null,"url":null,"abstract":"We designed and evaluated SplitVector, a new vector field display approach to help scientists perform new discrimination tasks on scientific data shown in virtual environments (VEs). Our empirical study compared the SplitVector approach with three other approaches of direct linear representation, log, and text display common in information-rich VEs or IRVEs. Our results suggest the following: (1) SplitVectors improve the accuracy by about 10 times compared to the linear mapping and by 4 times to log in discrimination tasks; (2) SplitVectors lead to no significant differences from the IRVE text display approach, yet reduce the clutter; and (3) SplitVector improved task performance in both mono and stereoscopy conditions.","PeriodicalId":231501,"journal":{"name":"2015 IEEE Virtual Reality (VR)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2015.7223347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We designed and evaluated SplitVector, a new vector field display approach to help scientists perform new discrimination tasks on scientific data shown in virtual environments (VEs). Our empirical study compared the SplitVector approach with three other approaches of direct linear representation, log, and text display common in information-rich VEs or IRVEs. Our results suggest the following: (1) SplitVectors improve the accuracy by about 10 times compared to the linear mapping and by 4 times to log in discrimination tasks; (2) SplitVectors lead to no significant differences from the IRVE text display approach, yet reduce the clutter; and (3) SplitVector improved task performance in both mono and stereoscopy conditions.
虚拟环境中量子物理数据定量可视化的SplitVector编码和立体验证
我们设计并评估了SplitVector,这是一种新的矢量场显示方法,可以帮助科学家对虚拟环境(VEs)中显示的科学数据进行新的识别任务。我们的实证研究将SplitVector方法与其他三种在信息丰富的ve或irve中常见的直接线性表示、日志和文本显示方法进行了比较。结果表明:(1)与线性映射相比,SplitVectors的准确率提高了约10倍,在登录识别任务上提高了4倍;(2) SplitVectors与IRVE文本显示方法无显著差异,但减少了杂乱;(3) SplitVector提高了单眼和立体条件下的任务性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信