Adaptive Gain and Order Scheduling of Optimal Fractional Order PIlamdaDµ Controllers with Radial Basis Function Neural-Network

Saptarshi Das, Sayan Saha, Ayan Mukherjee, Indranil Pan, Amitava Gupta
{"title":"Adaptive Gain and Order Scheduling of Optimal Fractional Order PIlamdaDµ Controllers with Radial Basis Function Neural-Network","authors":"Saptarshi Das, Sayan Saha, Ayan Mukherjee, Indranil Pan, Amitava Gupta","doi":"10.1109/PACC.2011.5979047","DOIUrl":null,"url":null,"abstract":"Gain and order scheduling of fractional order (FO) PIeDi controllers are studied in this paper considering four different classes of higher order processes. The mapping between the optimum PID/FOPID controller parameters and the reduced order process models are done using Radial Basis Function (RBF) type Artificial Neural Network (ANN). Simulation studies have been done to show the effectiveness of the RBFNN for online scheduling of such controllers with random change in set-point and process parameters.","PeriodicalId":403612,"journal":{"name":"2011 International Conference on Process Automation, Control and Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Process Automation, Control and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACC.2011.5979047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Gain and order scheduling of fractional order (FO) PIeDi controllers are studied in this paper considering four different classes of higher order processes. The mapping between the optimum PID/FOPID controller parameters and the reduced order process models are done using Radial Basis Function (RBF) type Artificial Neural Network (ANN). Simulation studies have been done to show the effectiveness of the RBFNN for online scheduling of such controllers with random change in set-point and process parameters.
基于径向基函数神经网络的最优分数阶PIlamdaD控制器的自适应增益和顺序调度
针对四种不同的高阶过程,研究了分数阶PIeDi控制器的增益和顺序调度问题。采用径向基函数(RBF)型人工神经网络(ANN)实现了PID/FOPID控制器最优参数与降阶过程模型之间的映射。仿真研究表明,RBFNN对具有随机设定点和过程参数变化的该类控制器的在线调度是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信