Human mobility analysis based on social media and fuzzy clustering

Jesús Cuenca-Jara, Fernando Terroso-Sáenz, M. Valdés-Vela, Aurora González-Vidal, A. Gómez-Skarmeta
{"title":"Human mobility analysis based on social media and fuzzy clustering","authors":"Jesús Cuenca-Jara, Fernando Terroso-Sáenz, M. Valdés-Vela, Aurora González-Vidal, A. Gómez-Skarmeta","doi":"10.1109/GIOTS.2017.8016266","DOIUrl":null,"url":null,"abstract":"A better understanding of the movement of a city aids to the efficient adaptation of the energy consumption to the necessities of citizens. For this purpose, the use of clustering algorithms applied to large amounts of geo-tagged data generated in social-networks is foreseen to become an interesting course of action. This will help to comprehensively capture and understand the movement of people in large spatial regions. Due to the nature of this kind of data (with high levels of uncertainty and noise) soft-computing owns the necessary characteristics to extract accurate mobility models. The present work introduces a novel approach to extract personal mobility patterns by means of the fuzzy c-means (FCM) algorithm. A preliminary study with a real Twitter database is also included.","PeriodicalId":413939,"journal":{"name":"2017 Global Internet of Things Summit (GIoTS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Global Internet of Things Summit (GIoTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GIOTS.2017.8016266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A better understanding of the movement of a city aids to the efficient adaptation of the energy consumption to the necessities of citizens. For this purpose, the use of clustering algorithms applied to large amounts of geo-tagged data generated in social-networks is foreseen to become an interesting course of action. This will help to comprehensively capture and understand the movement of people in large spatial regions. Due to the nature of this kind of data (with high levels of uncertainty and noise) soft-computing owns the necessary characteristics to extract accurate mobility models. The present work introduces a novel approach to extract personal mobility patterns by means of the fuzzy c-means (FCM) algorithm. A preliminary study with a real Twitter database is also included.
基于社交媒体和模糊聚类的人的流动性分析
更好地了解城市的运动有助于有效地适应市民的能源消耗需求。为此目的,将聚类算法应用于社交网络中生成的大量地理标记数据,预计将成为一种有趣的做法。这将有助于全面捕捉和理解大空间区域的人口流动。由于这类数据的性质(具有高度的不确定性和噪声),软计算具有提取准确迁移模型的必要特征。本文介绍了一种利用模糊c均值(FCM)算法提取个人流动模式的新方法。本文还包括对真实Twitter数据库的初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信