UrbanEdge

Xiaochen Fan, Chaocan Xiang, Liangyi Gong, Xiangjian He, Chao Chen, Xiang Huang
{"title":"UrbanEdge","authors":"Xiaochen Fan, Chaocan Xiang, Liangyi Gong, Xiangjian He, Chao Chen, Xiang Huang","doi":"10.1145/3321408.3323089","DOIUrl":null,"url":null,"abstract":"The revolution of smart city has led to rapid development and proliferation of Internet of Things (IoT) technologies, with the focus on transmitting raw sensory data into valuable knowledge. Meanwhile, the ubiquitous deployments of IoT are raising the importance of processing data in real-time at the edge of networks rather than in remote cloud data centers. Based on above, edge computing has been proposed to exploit the capabilities of edge devices in providing in-proximity computing services for various IoT applications. In this paper, we present UrbanEdge, a conceptual edge computing architecture empowered by deep learning for urban IoT time series prediction. We design a hierarchical architecture to process correlated IoT time series and illustrate the work-flow of UrbanEdge in data collection, data transmission and data processing. As a core component of UrbanEdge, a deep learning model is developed with attention-based recurrent neural networks. Composed with multiple processing layers, the deep learning model can extract feature representations from raw IoT data for monitoring and prediction. We evaluate the designed deep learning model of UrbanEdge on real-world datasets, evaluation results show that the UrbanEdge outperforms other baseline methods in time series prediction.","PeriodicalId":364264,"journal":{"name":"Proceedings of the ACM Turing Celebration Conference - China","volume":"637 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Turing Celebration Conference - China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3321408.3323089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The revolution of smart city has led to rapid development and proliferation of Internet of Things (IoT) technologies, with the focus on transmitting raw sensory data into valuable knowledge. Meanwhile, the ubiquitous deployments of IoT are raising the importance of processing data in real-time at the edge of networks rather than in remote cloud data centers. Based on above, edge computing has been proposed to exploit the capabilities of edge devices in providing in-proximity computing services for various IoT applications. In this paper, we present UrbanEdge, a conceptual edge computing architecture empowered by deep learning for urban IoT time series prediction. We design a hierarchical architecture to process correlated IoT time series and illustrate the work-flow of UrbanEdge in data collection, data transmission and data processing. As a core component of UrbanEdge, a deep learning model is developed with attention-based recurrent neural networks. Composed with multiple processing layers, the deep learning model can extract feature representations from raw IoT data for monitoring and prediction. We evaluate the designed deep learning model of UrbanEdge on real-world datasets, evaluation results show that the UrbanEdge outperforms other baseline methods in time series prediction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信