{"title":"Nonparametric estimation using neural networks","authors":"G. Lugosi, K. Zeger","doi":"10.1109/ISIT.1994.394876","DOIUrl":null,"url":null,"abstract":"We show that properly trained neural networks provide universally consistent nonparametric estimators. The results apply to regression estimation, conditional median estimation, curve fitting, pattern recognition and learning concepts. The estimators minimize the empirical L/sub p/-error.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that properly trained neural networks provide universally consistent nonparametric estimators. The results apply to regression estimation, conditional median estimation, curve fitting, pattern recognition and learning concepts. The estimators minimize the empirical L/sub p/-error.<>