Curvature tensor of connection in principal bundle of Cartan's projective connection space

K. Bashashina
{"title":"Curvature tensor of connection in principal bundle\nof Cartan's projective connection space","authors":"K. Bashashina","doi":"10.5922/10.5922/0321-4796-2019-50-5","DOIUrl":null,"url":null,"abstract":"We considered Cartan's projective connection space with structure equations generalizing the structure equations of the projective space and the condition of local projectivity (this condition is an analogue to the equiprojectivity condition in the projective space). The curvature-torsion object of the space is a tensor containing three subtensor: torsion tensor, torsion affine curvature tensor, extended torsion tensor. Cartan's projective connection space is not a space with connection of the principal bundle. The assignment of a connection in the adjoint principal bundle leads to a space with a connection. It is proved that the curvature object of the introduced connection is a tensor.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/10.5922/0321-4796-2019-50-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We considered Cartan's projective connection space with structure equations generalizing the structure equations of the projective space and the condition of local projectivity (this condition is an analogue to the equiprojectivity condition in the projective space). The curvature-torsion object of the space is a tensor containing three subtensor: torsion tensor, torsion affine curvature tensor, extended torsion tensor. Cartan's projective connection space is not a space with connection of the principal bundle. The assignment of a connection in the adjoint principal bundle leads to a space with a connection. It is proved that the curvature object of the introduced connection is a tensor.
Cartan射影连接空间主束中连接的曲率张量
我们将Cartan的射影连接空间与推广射影空间结构方程的结构方程和局部射影条件(此条件类似于射影空间中的等射影条件)结合起来考虑。空间的曲率-扭转对象是一个包含三个子张量的张量:扭转张量、扭转仿射曲率张量、扩展扭转张量。Cartan的射影连接空间不是一个有主束连接的空间。在伴随主束中分配一个连接导致一个具有连接的空间。证明了所引入连接的曲率对象是张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信