Upper and lower bounds on the number of fuzzy/c switching functions

H. Tatsumi, Tomoyuki Araki, M. Mukaidono, S. Tokumasu
{"title":"Upper and lower bounds on the number of fuzzy/c switching functions","authors":"H. Tatsumi, Tomoyuki Araki, M. Mukaidono, S. Tokumasu","doi":"10.1109/ISMVL.1998.679473","DOIUrl":null,"url":null,"abstract":"This paper describes an estimation on the size of n-variable fuzzy switching functions with arbitrary constants (\"fuzzy/c\" for short). The whole set of fuzzy/c switching functions is divided into equivalence classes called c/sub r/-equivalent. Estimating the number of these functions in each equivalence class can be reduced to enumerating disjunctive forms of a binary switching function, which can be solved by enumerating anti-chains of the partially ordered set composed of simple phrases. Using an improved method for estimating the number of anti-chains, we can get upper and lower bounds on the number of n-variable fuzzy/c switching functions.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes an estimation on the size of n-variable fuzzy switching functions with arbitrary constants ("fuzzy/c" for short). The whole set of fuzzy/c switching functions is divided into equivalence classes called c/sub r/-equivalent. Estimating the number of these functions in each equivalence class can be reduced to enumerating disjunctive forms of a binary switching function, which can be solved by enumerating anti-chains of the partially ordered set composed of simple phrases. Using an improved method for estimating the number of anti-chains, we can get upper and lower bounds on the number of n-variable fuzzy/c switching functions.
模糊/c切换函数个数的上界和下界
本文描述了具有任意常数的n变量模糊切换函数(简称“fuzzy/c”)的大小估计。将整组模糊/c切换函数划分为等价类,称为c/sub / r/-等价类。估计每个等价类中这些函数的个数可以简化为枚举二元交换函数的析取形式,这可以通过枚举由简单短语组成的部分有序集合的反链来解决。利用一种改进的估计反链数的方法,得到了n变量模糊/c切换函数个数的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信