DDOS ATTACK DETECTION IN TELECOMMUNICATION NETWORK USING MACHINE LEARNING

A Pasumponpandian, S. Smys
{"title":"DDOS ATTACK DETECTION IN TELECOMMUNICATION NETWORK\nUSING MACHINE LEARNING","authors":"A Pasumponpandian, S. Smys","doi":"10.36548/jucct.2019.1.004","DOIUrl":null,"url":null,"abstract":"The telecommunication network that is the assemblage of the terminal nodes enables the whole to be connected. The swift progress in the telecommunication networks and the information technology has enabled a seamless connection and the capacity to store and communicate vast scale of information in the form of text and voice that are sensitive. This makes the telecommunication networks prey to multiple cyber-threats of which the DDOS (distributed denial of service) are the more predominant type of the cyber-threat causing the denial of the services to the users. So the paper utilizing the combination of the neural network and the support vector machine presents the detection and the classification method for the DDOS attacks in the telecommunication network. The performance evaluation using the network simulator-2 enables to have the enhanced detection accuracy for the proposed method.","PeriodicalId":443052,"journal":{"name":"Journal of Ubiquitous Computing and Communication Technologies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ubiquitous Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jucct.2019.1.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

The telecommunication network that is the assemblage of the terminal nodes enables the whole to be connected. The swift progress in the telecommunication networks and the information technology has enabled a seamless connection and the capacity to store and communicate vast scale of information in the form of text and voice that are sensitive. This makes the telecommunication networks prey to multiple cyber-threats of which the DDOS (distributed denial of service) are the more predominant type of the cyber-threat causing the denial of the services to the users. So the paper utilizing the combination of the neural network and the support vector machine presents the detection and the classification method for the DDOS attacks in the telecommunication network. The performance evaluation using the network simulator-2 enables to have the enhanced detection accuracy for the proposed method.
基于机器学习的电信网络Ddos攻击检测
电信网络是终端节点的集合,使整体得以连接。电信网络和信息技术的飞速发展使无缝连接成为可能,使人们能够以敏感的文本和语音形式存储和传播大量信息。这使得电信网络成为多种网络威胁的牺牲品,其中DDOS(分布式拒绝服务)是导致用户拒绝服务的更主要的网络威胁类型。因此,本文利用神经网络与支持向量机相结合的方法,提出了电信网络中DDOS攻击的检测与分类方法。利用网络模拟器-2进行性能评估,提高了该方法的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信