A modular reinforcement-based neural controller for a three-link manipulator

P. Martín, J. Millán
{"title":"A modular reinforcement-based neural controller for a three-link manipulator","authors":"P. Martín, J. Millán","doi":"10.1109/IROS.1997.655100","DOIUrl":null,"url":null,"abstract":"This paper presents a modular neural controller that learns goal-oriented obstacle-avoiding motion strategies for a sensor-based three-link planar robot arm. It acquires these strategies through reinforcement learning from local sensory data. The controller has two reinforcement-based modules: a module for negotiating obstacles and a module for moving to the goal. Both modules generate actions that are interpreted with regard to a goal vector in the robot joint space. A differential inverse kinematics (DIV) module is used to obtain such a goal vector. The DIV module is based on the inversion of a neural network that has been previously trained to approximate the manipulator forward kinematics in polar coordinates. The controller achieves a satisfactory performance quite rapidly and shows good generalization capabilities in the face of new environments.","PeriodicalId":408848,"journal":{"name":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1997.655100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a modular neural controller that learns goal-oriented obstacle-avoiding motion strategies for a sensor-based three-link planar robot arm. It acquires these strategies through reinforcement learning from local sensory data. The controller has two reinforcement-based modules: a module for negotiating obstacles and a module for moving to the goal. Both modules generate actions that are interpreted with regard to a goal vector in the robot joint space. A differential inverse kinematics (DIV) module is used to obtain such a goal vector. The DIV module is based on the inversion of a neural network that has been previously trained to approximate the manipulator forward kinematics in polar coordinates. The controller achieves a satisfactory performance quite rapidly and shows good generalization capabilities in the face of new environments.
基于模块化增强的三连杆机械臂神经控制器
针对基于传感器的平面三连杆机械臂,提出了一种模块化神经控制器,用于学习面向目标的避障运动策略。它通过对局部感官数据的强化学习来获取这些策略。控制器有两个基于强化的模块:一个模块用于越过障碍,一个模块用于移动到目标。这两个模块生成的动作都是根据机器人关节空间中的目标向量来解释的。微分逆运动学(DIV)模块用于获得这样的目标向量。DIV模块是基于神经网络的反演,该神经网络先前已被训练以在极坐标中近似机械臂的正运动学。该控制器在较短的时间内取得了令人满意的性能,并在新环境下表现出良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信