Stochastic optimization algorithms for parameter identification of three phase induction motors with experimental verification

R. Houili, M. Hammoudi, Abir Betka, A. Titaouine
{"title":"Stochastic optimization algorithms for parameter identification of three phase induction motors with experimental verification","authors":"R. Houili, M. Hammoudi, Abir Betka, A. Titaouine","doi":"10.1109/ICAECCS56710.2023.10104526","DOIUrl":null,"url":null,"abstract":"Induction motors are widely used in industrial processes owing to their efficiency, adaptability, and low cost. For controlling, analyzing, and solving induction motor problems, the estimation of the equivalent circuit parameters is essential. Recently, numerous metaheuristics have been employed to estimate the induction motor parameters, due to their robustness, simplicity, and rapidity. In this paper, six different metaheuristics are used to estimate the parameters of an induction motor: particle swarm optimization (PSO), stochastic fractal search (SFS), equilibrium optimizer (EO), manta ray foraging optimization (MRFO), chaos game optimization (CGO), and jellyfish search (JS). The estimation accuracy of these metaheuristics is verified by computing the sum of the absolute differences between the measured and equivalent model outputs.Experimental results show that the CGO algorithm can provide a small SAD value of 1.1045, and SFS methods can also yield an acceptable SAD value up to 1.1063.","PeriodicalId":447668,"journal":{"name":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAECCS56710.2023.10104526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Induction motors are widely used in industrial processes owing to their efficiency, adaptability, and low cost. For controlling, analyzing, and solving induction motor problems, the estimation of the equivalent circuit parameters is essential. Recently, numerous metaheuristics have been employed to estimate the induction motor parameters, due to their robustness, simplicity, and rapidity. In this paper, six different metaheuristics are used to estimate the parameters of an induction motor: particle swarm optimization (PSO), stochastic fractal search (SFS), equilibrium optimizer (EO), manta ray foraging optimization (MRFO), chaos game optimization (CGO), and jellyfish search (JS). The estimation accuracy of these metaheuristics is verified by computing the sum of the absolute differences between the measured and equivalent model outputs.Experimental results show that the CGO algorithm can provide a small SAD value of 1.1045, and SFS methods can also yield an acceptable SAD value up to 1.1063.
三相异步电动机参数辨识的随机优化算法及实验验证
感应电动机以其高效、适应性强、成本低等特点在工业生产中得到了广泛的应用。为了控制、分析和解决感应电机问题,等效电路参数的估计是必不可少的。近年来,由于其鲁棒性、简单性和快速性,许多元启发式方法被用于估计感应电机参数。本文采用粒子群优化(PSO)、随机分形搜索(SFS)、平衡优化(EO)、蝠鲼觅食优化(MRFO)、混沌博弈优化(CGO)和水母搜索(JS)六种不同的元启发式算法来估计感应电机的参数。这些元启发式的估计精度是通过计算测量和等效模型输出之间的绝对差的总和来验证的。实验结果表明,CGO算法可以提供一个较小的SAD值为1.1045,SFS方法也可以产生一个可接受的SAD值为1.1063。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信