Uwais Suliman, Terence L. van Zyl, A. Paskaramoorthy
{"title":"Cryptocurrency Trading Agent Using Deep Reinforcement Learning","authors":"Uwais Suliman, Terence L. van Zyl, A. Paskaramoorthy","doi":"10.1109/ISCMI56532.2022.10068485","DOIUrl":null,"url":null,"abstract":"Cryptocurrencies are peer-to-peer digital assets monitored and organised by a blockchain network. Price prediction has been a significant focus point with various machine learning algorithms, especially concerning cryptocurrency. This work addresses the challenge faced by traders of short-term profit maximisation. The study presents a deep reinforcement learning algorithm to trade in cryptocurrency markets, Duelling DQN. The environment has been designed to simulate actual trading behaviour, observing historical price movements and taking action on real-time prices. The proposed algorithm was tested with Bitcoin, Ethereum, and Litecoin. The respective portfolio returns are used as a metric to measure the algorithm's performance against the buy-and-hold benchmark, with the buy-and-hold outperforming the results produced by the Duelling DQN agent.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cryptocurrencies are peer-to-peer digital assets monitored and organised by a blockchain network. Price prediction has been a significant focus point with various machine learning algorithms, especially concerning cryptocurrency. This work addresses the challenge faced by traders of short-term profit maximisation. The study presents a deep reinforcement learning algorithm to trade in cryptocurrency markets, Duelling DQN. The environment has been designed to simulate actual trading behaviour, observing historical price movements and taking action on real-time prices. The proposed algorithm was tested with Bitcoin, Ethereum, and Litecoin. The respective portfolio returns are used as a metric to measure the algorithm's performance against the buy-and-hold benchmark, with the buy-and-hold outperforming the results produced by the Duelling DQN agent.