Applications of Ontologies and Text Mining in the Biomedical Domain

Antonio Jimeno-Yepes, Rafael Berlanga Llavori, D. Rebholz-Schuhmann
{"title":"Applications of Ontologies and Text Mining in the Biomedical Domain","authors":"Antonio Jimeno-Yepes, Rafael Berlanga Llavori, D. Rebholz-Schuhmann","doi":"10.4018/978-1-61520-859-3.CH012","DOIUrl":null,"url":null,"abstract":"Ontologies represent domain knowledge that improves user interaction and interoperability between applications. In addition, ontologies deliver precious input to text mining techniques in the biomedical domain, which might improve the performance in different text mining tasks. This chapter will explore on the mutual benefits for ontologies and text mining techniques. Ontology development is a time consuming task. Most efforts are spent in the acquisition of terms that represent concepts in real life. This process can use the existing scientific literature and the World Wide Web. The identification of concept labels, i.e. terms, from these sources using text mining solutions improves ontology development since the literature resources make reference to existing terms and concepts. Furthermore, automatic text processing techniques profit from ontological resources in different tasks, for example in the disambiguation of terms and the enrichment of terminological resources for the text mining solution. One of the most important text mining tasks that exploits ontological resources consists of the mapping of concepts to terms in textual sources (e.g. named entity recognition, semantic indexing) and the expansion of queries in information retrieval. DOI: 10.4018/978-1-61520-859-3.ch012","PeriodicalId":169003,"journal":{"name":"Ontology Theory, Management and Design","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ontology Theory, Management and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61520-859-3.CH012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Ontologies represent domain knowledge that improves user interaction and interoperability between applications. In addition, ontologies deliver precious input to text mining techniques in the biomedical domain, which might improve the performance in different text mining tasks. This chapter will explore on the mutual benefits for ontologies and text mining techniques. Ontology development is a time consuming task. Most efforts are spent in the acquisition of terms that represent concepts in real life. This process can use the existing scientific literature and the World Wide Web. The identification of concept labels, i.e. terms, from these sources using text mining solutions improves ontology development since the literature resources make reference to existing terms and concepts. Furthermore, automatic text processing techniques profit from ontological resources in different tasks, for example in the disambiguation of terms and the enrichment of terminological resources for the text mining solution. One of the most important text mining tasks that exploits ontological resources consists of the mapping of concepts to terms in textual sources (e.g. named entity recognition, semantic indexing) and the expansion of queries in information retrieval. DOI: 10.4018/978-1-61520-859-3.ch012
本体和文本挖掘在生物医学领域的应用
本体表示领域知识,可以改进应用程序之间的用户交互和互操作性。此外,本体为生物医学领域的文本挖掘技术提供了宝贵的输入,这可能会提高不同文本挖掘任务的性能。本章将探讨本体和文本挖掘技术的相互好处。本体开发是一项耗时的任务。大部分的努力都花在获取代表现实生活中概念的术语上。这个过程可以利用现有的科学文献和万维网。使用文本挖掘解决方案从这些资源中识别概念标签,即术语,可以改善本体的开发,因为文献资源引用了现有的术语和概念。此外,自动文本处理技术从不同任务中的本体资源中获益,例如在术语消歧和丰富文本挖掘解决方案的术语资源方面。利用本体资源的最重要的文本挖掘任务之一是将概念映射到文本源中的术语(如命名实体识别、语义索引)和信息检索中的查询扩展。DOI: 10.4018 / 978 - 1 - 61520 - 859 - 3. - ch012
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信