Stress Analysis in Uniaxially Strained-SiGe Channel FinFETs at 7N Technology Node

Tara Prasanna Dash, S. Das, S. Dey, J. Jena, E. Mohapatra, C. K. Maiti
{"title":"Stress Analysis in Uniaxially Strained-SiGe Channel FinFETs at 7N Technology Node","authors":"Tara Prasanna Dash, S. Das, S. Dey, J. Jena, E. Mohapatra, C. K. Maiti","doi":"10.1109/EDKCON.2018.8770446","DOIUrl":null,"url":null,"abstract":"The uniaxial compressive strain has been an indispensable performance booster for p-channel FinFETs. In this work, based on extensive 3D process and device simulations, performance assessment of nanoscale tri-gate FinFETs with uniaxially strained SiGe channel (fin) has been presented. A comprehensive study based on stress tuning parameters is carried out to investigate the possible highest amount of process induced stress transfer to SiGe fin for optimization of device performance. The impact of process induced stress on carrier mobility enhancement in 7nm technology node is another major focus of this study. The stress transfer efficiency is shown for different process conditions with various Ge contents. Technology CAD simulations show that strain in the fin is large for higher Ge contents in the SiGe layer for p-channel FinFETs. For the first time, the conversion of biaxially strained SiGe to uniaxially strained SiGe via process simulation has been demonstrated, and implemented as uniaxial strained-SiGe channel (fin) in tri-gate FinFETs for high performance.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The uniaxial compressive strain has been an indispensable performance booster for p-channel FinFETs. In this work, based on extensive 3D process and device simulations, performance assessment of nanoscale tri-gate FinFETs with uniaxially strained SiGe channel (fin) has been presented. A comprehensive study based on stress tuning parameters is carried out to investigate the possible highest amount of process induced stress transfer to SiGe fin for optimization of device performance. The impact of process induced stress on carrier mobility enhancement in 7nm technology node is another major focus of this study. The stress transfer efficiency is shown for different process conditions with various Ge contents. Technology CAD simulations show that strain in the fin is large for higher Ge contents in the SiGe layer for p-channel FinFETs. For the first time, the conversion of biaxially strained SiGe to uniaxially strained SiGe via process simulation has been demonstrated, and implemented as uniaxial strained-SiGe channel (fin) in tri-gate FinFETs for high performance.
单轴应变sige通道finfet在7N技术节点的应力分析
单轴压缩应变已成为p沟道finfet不可缺少的性能提升器。在这项工作中,基于广泛的3D工艺和器件模拟,提出了具有单轴应变SiGe通道(fin)的纳米三栅极finfet的性能评估。为了优化器件性能,本文基于应力调谐参数进行了一项全面的研究,以探讨可能的最大工艺诱导应力转移到SiGe鳍上。工艺诱导应力对7nm技术节点载流子迁移率增强的影响是本研究的另一个重点。在不同的工艺条件和不同的锗含量下,表明了应力传递效率。技术CAD模拟表明,对于p沟道finfet,当SiGe层中Ge含量较高时,翅片中的应变较大。首次通过工艺模拟证明了双轴应变SiGe到单轴应变SiGe的转换,并在三栅极finfet中实现了单轴应变SiGe通道(fin),以获得高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信