Robust model parameter extraction using large-scale optimization concepts

J. Bandler, S.H. Chen, S. Ye, Q. Zhang
{"title":"Robust model parameter extraction using large-scale optimization concepts","authors":"J. Bandler, S.H. Chen, S. Ye, Q. Zhang","doi":"10.1109/MWSYM.1988.22040","DOIUrl":null,"url":null,"abstract":"A robust approach to FET model parameter extraction is presented. By introducing DC constraints and formulating the modeling process as a complete and integrated optimization problem, the uniqueness and reliability of the extracted model parameters is improved. The approach uses multibias measurements and DC device characteristics in a sequential model building approach based on a decomposition dictionary that can be used to arrive at a suitable compromise between the simplicity and adequacy of the model. Novel automatic decomposition concepts for large-scale optimization are used to detect possible model topology deficiencies. A powerful l/sub 1/ optimization technique is used in the algorithm, and all the required gradients are provided through efficient adjoint analyses for both DC and AC sensitivities. A FET modeling example is described in detail to demonstrate the approach.<<ETX>>","PeriodicalId":339513,"journal":{"name":"1988., IEEE MTT-S International Microwave Symposium Digest","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988., IEEE MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.1988.22040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A robust approach to FET model parameter extraction is presented. By introducing DC constraints and formulating the modeling process as a complete and integrated optimization problem, the uniqueness and reliability of the extracted model parameters is improved. The approach uses multibias measurements and DC device characteristics in a sequential model building approach based on a decomposition dictionary that can be used to arrive at a suitable compromise between the simplicity and adequacy of the model. Novel automatic decomposition concepts for large-scale optimization are used to detect possible model topology deficiencies. A powerful l/sub 1/ optimization technique is used in the algorithm, and all the required gradients are provided through efficient adjoint analyses for both DC and AC sensitivities. A FET modeling example is described in detail to demonstrate the approach.<>
基于大规模优化概念的鲁棒模型参数提取
提出了一种鲁棒的场效应管模型参数提取方法。通过引入直流约束,将建模过程表述为一个完整的集成优化问题,提高了提取模型参数的唯一性和可靠性。该方法在基于分解字典的顺序模型构建方法中使用多偏置测量和直流器件特性,该方法可用于在模型的简单性和充分性之间达到适当的折衷。采用新颖的大规模优化自动分解概念来检测可能存在的模型拓扑缺陷。该算法采用了强大的l/sub /优化技术,并通过对直流和交流灵敏度的有效伴随分析提供了所需的梯度。详细描述了一个场效应管建模示例来演示该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信