Quanyao Ren, L. Pan, Wenxiong Zhou, Ting-pu Ye, Hang Liu, Song-song Li
{"title":"Comparison of Drift-Flux Models for Void Fraction Prediction in Sub-Channel of Vertical Rod Bundles","authors":"Quanyao Ren, L. Pan, Wenxiong Zhou, Ting-pu Ye, Hang Liu, Song-song Li","doi":"10.1115/ICONE26-81435","DOIUrl":null,"url":null,"abstract":"In order to simulate the transfer of mass, momentum and energy in the gas-liquid two-phase flow system, tremendous work focused on the phenomenon, mechanisms and models for two-phase flow in different channels, such as circular pipe, rectangular channel, rod bundle and annulus. Drift-flux model is one of the widely used models for its simplicity and good accuracy, especially for the reactor safety analysis codes (RELAP5 and TRAC et al.) and sub-channel analysis code (COBRA, SILFEED and NASCA et al.). Most of the adopted drift-flux models in these codes were developed based on the void fraction measured in pipe and annulus, which were different with the actual nuclear reactor. Although some drift-flux models were developed for rod bundles, they were based on the void fraction on the whole cross-section not in subchannel in rod bundles due to the lack of effective measuring methods. A novel sub-channel impedance void meter (SCIVM) has been developed to measure the void fraction in sub-channel of 5 × 5 rod bundles, which is adopted to evaluate these existing drift-flux models for rod bundles. By comparison, the values of drift-flux parameters have large differences among different correlations, which are suggested to be reconsidered. Based on the experimental data and physical laws, Lellouche-Zolotar and Chexal-Lellouche correlations show a better performance for drift velocity. If the predicting error of void fraction is the only concerned parameter, Chen-Liu, Ishizuka-Inoue and Chexal-Lellouche correlations are recommended for averaged relative error less than 30%. More experiments are suggested to focus on the distribution parameter and drift velocity through their definition.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In order to simulate the transfer of mass, momentum and energy in the gas-liquid two-phase flow system, tremendous work focused on the phenomenon, mechanisms and models for two-phase flow in different channels, such as circular pipe, rectangular channel, rod bundle and annulus. Drift-flux model is one of the widely used models for its simplicity and good accuracy, especially for the reactor safety analysis codes (RELAP5 and TRAC et al.) and sub-channel analysis code (COBRA, SILFEED and NASCA et al.). Most of the adopted drift-flux models in these codes were developed based on the void fraction measured in pipe and annulus, which were different with the actual nuclear reactor. Although some drift-flux models were developed for rod bundles, they were based on the void fraction on the whole cross-section not in subchannel in rod bundles due to the lack of effective measuring methods. A novel sub-channel impedance void meter (SCIVM) has been developed to measure the void fraction in sub-channel of 5 × 5 rod bundles, which is adopted to evaluate these existing drift-flux models for rod bundles. By comparison, the values of drift-flux parameters have large differences among different correlations, which are suggested to be reconsidered. Based on the experimental data and physical laws, Lellouche-Zolotar and Chexal-Lellouche correlations show a better performance for drift velocity. If the predicting error of void fraction is the only concerned parameter, Chen-Liu, Ishizuka-Inoue and Chexal-Lellouche correlations are recommended for averaged relative error less than 30%. More experiments are suggested to focus on the distribution parameter and drift velocity through their definition.