Detection of both positive and negative correlated rows in biclusters using Squared Transposed Virtual Error

S. Mahmoudi, M. Menhaj
{"title":"Detection of both positive and negative correlated rows in biclusters using Squared Transposed Virtual Error","authors":"S. Mahmoudi, M. Menhaj","doi":"10.1109/RIOS.2016.7529515","DOIUrl":null,"url":null,"abstract":"Biological Laboratories produce huge amounts of data every day. Biologists without proper processing tools and software are not able to analyze and discover hidden knowledge of these huge volumes of data. Biclustering technique is one of the bioinformatics approaches which is used to analysis obtained data from microarrays. Each microarray represents a data matrix of real numbers and biclustering algorithms are used to extract some sub-matrices including some specific patterns. HEvo-Bexpa is an evolutionary biclustering algorithm which can find biclusters including shift, scale and shift-scale patterns using Transposed Virtual Error (VET). VET is equal to zero for biclusters which containing positive correlated rows but it is not responsible for both positive and negative correlated rows at the same time. In this study, VET is extended to Squared Transposed Virtual Error (SVET). Obtained results demonstrate that it is possible to find rows with positive and negative scales using SVET.","PeriodicalId":416467,"journal":{"name":"2016 Artificial Intelligence and Robotics (IRANOPEN)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Artificial Intelligence and Robotics (IRANOPEN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIOS.2016.7529515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biological Laboratories produce huge amounts of data every day. Biologists without proper processing tools and software are not able to analyze and discover hidden knowledge of these huge volumes of data. Biclustering technique is one of the bioinformatics approaches which is used to analysis obtained data from microarrays. Each microarray represents a data matrix of real numbers and biclustering algorithms are used to extract some sub-matrices including some specific patterns. HEvo-Bexpa is an evolutionary biclustering algorithm which can find biclusters including shift, scale and shift-scale patterns using Transposed Virtual Error (VET). VET is equal to zero for biclusters which containing positive correlated rows but it is not responsible for both positive and negative correlated rows at the same time. In this study, VET is extended to Squared Transposed Virtual Error (SVET). Obtained results demonstrate that it is possible to find rows with positive and negative scales using SVET.
利用平方转置虚误差检测双聚类中的正负相关行
生物实验室每天产生大量的数据。没有适当的处理工具和软件的生物学家无法分析和发现这些海量数据中隐藏的知识。双聚类技术是一种生物信息学方法,用于分析从微阵列获得的数据。每个微阵列代表一个实数数据矩阵,采用双聚类算法提取包含特定模式的子矩阵。HEvo-Bexpa是一种进化双聚类算法,它可以利用转置虚拟误差(VET)找到包括移位、缩放和移位-缩放模式在内的双聚类。对于包含正相关行的双聚类,VET等于零,但它不同时负责正相关行和负相关行。在本研究中,将VET扩展为平方转置虚拟误差(SVET)。得到的结果表明,使用SVET可以找到具有正和负尺度的行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信