Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation

M. A. Araghi, Hasan Barzegar Kelishami
{"title":"Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation","authors":"M. A. Araghi, Hasan Barzegar Kelishami","doi":"10.5899/2016/JFSVA-00284","DOIUrl":null,"url":null,"abstract":"In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2016/JFSVA-00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.
动态控制精度在模糊龙格-库塔法估计一个模糊微分方程的解
本文提出了一种用m阶模糊龙格-库塔法求解模糊微分方程的可靠方案。为此,采用随机算法和CESTAC方法对结果进行了验证。为了实现c++代码,使用了CADNA库。在这种情况下,找到最优步长。这些例子说明了用随机算法代替浮点算法的效率和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信