Enhanced computations of gröbner bases in free algebras as a new application of the letterplace paradigm

V. Levandovskyy, Grischa Studzinski, Benjamin Schnitzler
{"title":"Enhanced computations of gröbner bases in free algebras as a new application of the letterplace paradigm","authors":"V. Levandovskyy, Grischa Studzinski, Benjamin Schnitzler","doi":"10.1145/2465506.2465948","DOIUrl":null,"url":null,"abstract":"Recently, the notion of \"letterplace correspondence\" between ideals in the free associative algebra KX and certain ideals in the so-called letterplace ring KXP has evolved. We continue this research direction, started by La Scala and Levandovskyy, and present novel ideas, supported by the implementation, for effective computations with ideals in the free algebra by utilizing the generalized letterplace correspondance. In particular, we provide a direct algorithm to compute Gröbner bases of non-graded ideals. Surprizingly we realize its behavior as \"homogenizing without a homogenization variable\". Moreover, we develop new shift-invariant data structures for this family of algorithms and discuss about them.\n Furthermore we generalize the famous criteria of Gebauer-Möller to the non-commutative setting and show the benefits for the computation by allowing to skip unnecessary critical pairs. The methods are implemented in the computer algebra system Singular. We present a comparison of performance of our implementation with the corresponding implementations in the systems Magma [BCP97] and GAP [GAP13] on the representative set of nontrivial examples.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Recently, the notion of "letterplace correspondence" between ideals in the free associative algebra KX and certain ideals in the so-called letterplace ring KXP has evolved. We continue this research direction, started by La Scala and Levandovskyy, and present novel ideas, supported by the implementation, for effective computations with ideals in the free algebra by utilizing the generalized letterplace correspondance. In particular, we provide a direct algorithm to compute Gröbner bases of non-graded ideals. Surprizingly we realize its behavior as "homogenizing without a homogenization variable". Moreover, we develop new shift-invariant data structures for this family of algorithms and discuss about them. Furthermore we generalize the famous criteria of Gebauer-Möller to the non-commutative setting and show the benefits for the computation by allowing to skip unnecessary critical pairs. The methods are implemented in the computer algebra system Singular. We present a comparison of performance of our implementation with the corresponding implementations in the systems Magma [BCP97] and GAP [GAP13] on the representative set of nontrivial examples.
自由代数中gröbner基的增强计算作为字母位置范式的新应用
最近,自由结合代数KX中的理想与所谓的字母环KXP中的某些理想之间的“字母对应”概念得到了发展。我们继续这一由La Scala和levandovsky开创的研究方向,并提出了新的思想,在实现的支持下,利用广义字母对应在自由代数中有效地计算理想。特别地,我们提供了一种直接的算法来计算非分级理想的Gröbner基。令人惊讶的是,我们意识到它的行为是“没有均匀化变量的均匀化”。此外,我们为这类算法开发了新的移位不变数据结构,并对它们进行了讨论。此外,我们将著名的Gebauer-Möller准则推广到非交换设置,并通过允许跳过不必要的关键对来展示计算的好处。这些方法在计算机代数系统Singular中实现。在非平凡示例的代表性集上,我们将我们的实现与Magma [BCP97]和GAP [GAP13]系统中的相应实现进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信