Transformer Fault Diagnosis Based on Improved SVM Model

Xiaodong Yu, Li Zhang
{"title":"Transformer Fault Diagnosis Based on Improved SVM Model","authors":"Xiaodong Yu, Li Zhang","doi":"10.1109/ICNC.2009.453","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved SVM method in order to improve the speed of classification when SVM treats with the large training set. Firstly, using RS theory to eliminate redundant information of the large original training data set, secondly, utilizing the idea of probabilities, train an initial classifier with a small training set, and prune the large training set with the initial classifier to obtain a small reduction set. Training with the reduction set, final classifier is obtained. Experiments show that this method effectively reduces the training set, and improves the classify ability.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes an improved SVM method in order to improve the speed of classification when SVM treats with the large training set. Firstly, using RS theory to eliminate redundant information of the large original training data set, secondly, utilizing the idea of probabilities, train an initial classifier with a small training set, and prune the large training set with the initial classifier to obtain a small reduction set. Training with the reduction set, final classifier is obtained. Experiments show that this method effectively reduces the training set, and improves the classify ability.
基于改进SVM模型的变压器故障诊断
为了提高支持向量机处理大型训练集时的分类速度,本文提出了一种改进的支持向量机方法。首先,利用RS理论消除大型原始训练数据集的冗余信息,其次,利用概率思想,用小训练集训练初始分类器,用初始分类器对大训练集进行剪枝,得到小约简集。用约简集进行训练,得到最终的分类器。实验表明,该方法有效地减少了训练集,提高了分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信