ShadowVM

Zhifang Li, Mingcong Han, Shangwei Wu, Chuliang Weng
{"title":"ShadowVM","authors":"Zhifang Li, Mingcong Han, Shangwei Wu, Chuliang Weng","doi":"10.1145/3437801.3441595","DOIUrl":null,"url":null,"abstract":"With the development of the big data ecosystem, large-scale data analytics has become more prevalent in the past few years. Apache Spark, etc., provide a flexible approach for scalable processing upon massive data. However, they are not designed for handling computing-intensive workloads due to the restrictions of JVM runtime. In contrast, GPU has been the de facto accelerator for graphics rendering and deep learning in recent years. Nevertheless, the current architecture makes it difficult to take advantage of GPUs and other accelerators in the big data world. Now, it is time to break down this obstacle by changing the fundamental architecture. To integrate accelerators efficiently, we decouple the control plane and the data plane within big data systems via action shadowing. The control plane keeps logic information to fit well with the host systems like Spark, while the data plane holds data and performs execution upon bare metal CPUs and GPUs. Under this decoupled architecture, both the control plane and the data plane could leverage the appropriate approaches without breaking existing mechanisms. Based on this idea, we implement an accelerated data plane, namely ShadowVM. In our experiments on the SSB benchmark, ShadowVM lifts the JVM-based Spark with up to 14.7× speedup. Furthermore, ShadowVM could also outperform the GPU-only fashion by adopting mixed CPU-GPU execution.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of the big data ecosystem, large-scale data analytics has become more prevalent in the past few years. Apache Spark, etc., provide a flexible approach for scalable processing upon massive data. However, they are not designed for handling computing-intensive workloads due to the restrictions of JVM runtime. In contrast, GPU has been the de facto accelerator for graphics rendering and deep learning in recent years. Nevertheless, the current architecture makes it difficult to take advantage of GPUs and other accelerators in the big data world. Now, it is time to break down this obstacle by changing the fundamental architecture. To integrate accelerators efficiently, we decouple the control plane and the data plane within big data systems via action shadowing. The control plane keeps logic information to fit well with the host systems like Spark, while the data plane holds data and performs execution upon bare metal CPUs and GPUs. Under this decoupled architecture, both the control plane and the data plane could leverage the appropriate approaches without breaking existing mechanisms. Based on this idea, we implement an accelerated data plane, namely ShadowVM. In our experiments on the SSB benchmark, ShadowVM lifts the JVM-based Spark with up to 14.7× speedup. Furthermore, ShadowVM could also outperform the GPU-only fashion by adopting mixed CPU-GPU execution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信