Plasma-induced energy band evolution for two-dimensional heterogeneous anti-ambipolar transistors

Simran Shahi, Asma Ahmed, Ruizhe Yang, Anthony Cabanillas, Anindita Chakravarty, Maomao Liu, H. N. Jaiswal, Yu Fu, Yutong Guo, Satyajeetsinh Shaileshsin Jadeja, Hariharan Murugesan, Anthony Butler, Chu Te Chen, Joel Muhigirwa, Mohamed Enaitalla, Jun Liu, Fei Yao, Huamin Li
{"title":"Plasma-induced energy band evolution for two-dimensional heterogeneous anti-ambipolar transistors","authors":"Simran Shahi, Asma Ahmed, Ruizhe Yang, Anthony Cabanillas, Anindita Chakravarty, Maomao Liu, H. N. Jaiswal, Yu Fu, Yutong Guo, Satyajeetsinh Shaileshsin Jadeja, Hariharan Murugesan, Anthony Butler, Chu Te Chen, Joel Muhigirwa, Mohamed Enaitalla, Jun Liu, Fei Yao, Huamin Li","doi":"10.1116/6.0002888","DOIUrl":null,"url":null,"abstract":"With the rise of two-dimensional (2D) materials and nanoelectronics, compatible processes based on existing Si technologies are highly demanded to enable new and superior device functions. In this study, we utilized an O2 plasma treatment as a compatible and tunable method for anionic substitution doping in 2D WSe2. With an introduced WOx layer, moderate or even degenerate doping was realized to enhance hole transport in WSe2. By combining with 2D MoS2, an evolution of the 2D heterogeneous junction, in terms of the energy band structure and charge transport, was comprehensively investigated as a function of applied electric fields. The heterogeneous WSe2/MoS2 junction can function as an antiambipolar transistor and exhibit exceptional and well-balanced performance, including a superior peak-valley ratio of 2.4 × 105 and a high current density of 55 nA/μm. This work highlights the immense potential of 2D materials and their engineering to seamlessly integrate with existing semiconductor technology and enhance the efficiency of future nanoelectronics.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rise of two-dimensional (2D) materials and nanoelectronics, compatible processes based on existing Si technologies are highly demanded to enable new and superior device functions. In this study, we utilized an O2 plasma treatment as a compatible and tunable method for anionic substitution doping in 2D WSe2. With an introduced WOx layer, moderate or even degenerate doping was realized to enhance hole transport in WSe2. By combining with 2D MoS2, an evolution of the 2D heterogeneous junction, in terms of the energy band structure and charge transport, was comprehensively investigated as a function of applied electric fields. The heterogeneous WSe2/MoS2 junction can function as an antiambipolar transistor and exhibit exceptional and well-balanced performance, including a superior peak-valley ratio of 2.4 × 105 and a high current density of 55 nA/μm. This work highlights the immense potential of 2D materials and their engineering to seamlessly integrate with existing semiconductor technology and enhance the efficiency of future nanoelectronics.
二维非均相反双极晶体管的等离子体诱导能带演化
随着二维(2D)材料和纳米电子学的兴起,基于现有硅技术的兼容工艺被高度要求,以实现新的和卓越的设备功能。在这项研究中,我们利用O2等离子体处理作为一种兼容和可调的方法,在二维WSe2中进行阴离子取代掺杂。通过引入WOx层,实现了适度甚至简并掺杂,增强了WSe2中的空穴输运。结合二维二硫化钼,全面研究了二维非均质结的能带结构和电荷输运随外加电场的变化规律。非均质WSe2/MoS2结可以作为反双极晶体管,并具有优异的平衡性能,包括2.4 × 105的卓越峰谷比和55 nA/μm的高电流密度。这项工作突出了二维材料及其工程与现有半导体技术无缝集成并提高未来纳米电子学效率的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信