Data-Driven Feature-Based 3D Face Synthesis

Yu Zhang, Shuhong Xu
{"title":"Data-Driven Feature-Based 3D Face Synthesis","authors":"Yu Zhang, Shuhong Xu","doi":"10.1109/3DIM.2007.17","DOIUrl":null,"url":null,"abstract":"This paper presents a novel data-driven method for creating varied realistic face models by synthesizing a set of facial features according to intuitive high-level control parameters. Our method takes as examples 3D face scans in order to exploit the variations presented in the real faces of individuals. We use an automatic model fitting approach for the 3D registration problem. Once we have a common surface representation for each example, we form feature shape spaces by applying principal component analysis (PCA) to the data sets of facial feature shapes. Using PCA coefficients as a compact shape representation, we approach the shape synthesis problem by forming scattered data interpolation functions that are devoted to the generation of desired shape by taking the anthropometric parameters as input. The correspondence among all exemplar textures is obtained by parameterizing a 3D generic mesh over a 2D image domain. The new feature texture with desired attributes is synthesized by interpolating the example textures. Apart from an initial tuning of feature point positions and assignment of texture attribute values, our method is fully automated.","PeriodicalId":442311,"journal":{"name":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2007.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a novel data-driven method for creating varied realistic face models by synthesizing a set of facial features according to intuitive high-level control parameters. Our method takes as examples 3D face scans in order to exploit the variations presented in the real faces of individuals. We use an automatic model fitting approach for the 3D registration problem. Once we have a common surface representation for each example, we form feature shape spaces by applying principal component analysis (PCA) to the data sets of facial feature shapes. Using PCA coefficients as a compact shape representation, we approach the shape synthesis problem by forming scattered data interpolation functions that are devoted to the generation of desired shape by taking the anthropometric parameters as input. The correspondence among all exemplar textures is obtained by parameterizing a 3D generic mesh over a 2D image domain. The new feature texture with desired attributes is synthesized by interpolating the example textures. Apart from an initial tuning of feature point positions and assignment of texture attribute values, our method is fully automated.
基于数据驱动特征的3D人脸合成
本文提出了一种数据驱动的方法,根据直观的高级控制参数,综合一组面部特征,创建各种逼真的人脸模型。我们的方法以三维人脸扫描为例,以利用个体真实面部呈现的变化。我们使用了一种自动模型拟合的方法来解决三维配准问题。一旦我们对每个例子都有一个共同的表面表示,我们通过对面部特征形状数据集应用主成分分析(PCA)来形成特征形状空间。使用PCA系数作为紧凑的形状表示,我们通过形成分散的数据插值函数来解决形状综合问题,这些插值函数致力于通过将人体测量参数作为输入来生成所需的形状。通过在二维图像域上参数化三维通用网格,得到所有样例纹理之间的对应关系。通过插值样例纹理合成具有所需属性的新特征纹理。除了特征点位置的初始调整和纹理属性值的分配外,我们的方法是完全自动化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信