Detecting Web Content Function Using Generalized Hidden Markov Model

Jinlin Chen, Ping Zhong, Terry Cook
{"title":"Detecting Web Content Function Using Generalized Hidden Markov Model","authors":"Jinlin Chen, Ping Zhong, Terry Cook","doi":"10.1109/ICMLA.2006.21","DOIUrl":null,"url":null,"abstract":"Web content function indicates authors' intension towards the purpose of the content and therefore plays an important role for Web information processing. In this paper we propose a generalized hidden Markov model which extends traditional hidden Markov model for Web content function detection. By incorporating multiple emission features and detecting state transition sequence based on layout structure, generalized hidden Markov model can effectively make use of Web-specific information and achieve better performance comparing to traditional hidden Markov model. Comparing to previous approaches on function detection, our approach has the advantages of domain-independency and extensibility for other applications. Experiments show promising results with our approach","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Web content function indicates authors' intension towards the purpose of the content and therefore plays an important role for Web information processing. In this paper we propose a generalized hidden Markov model which extends traditional hidden Markov model for Web content function detection. By incorporating multiple emission features and detecting state transition sequence based on layout structure, generalized hidden Markov model can effectively make use of Web-specific information and achieve better performance comparing to traditional hidden Markov model. Comparing to previous approaches on function detection, our approach has the advantages of domain-independency and extensibility for other applications. Experiments show promising results with our approach
基于广义隐马尔可夫模型的Web内容函数检测
Web内容功能表明了作者对内容目的的意图,因此在Web信息处理中起着重要作用。本文在传统隐马尔可夫模型的基础上,提出了一种用于Web内容功能检测的广义隐马尔可夫模型。广义隐马尔可夫模型通过融合多种发射特征和基于布局结构的状态转移序列检测,能够有效利用web特有信息,比传统隐马尔可夫模型具有更好的性能。与以往的功能检测方法相比,该方法具有领域无关性和可扩展性等优点。实验表明,我们的方法具有良好的效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信