David E. Krzeminski, J. Goetz, Andrew P. Janisse, Nadine M. Lippa, Trenton E Gould, J. W. Rawlins, S. Piland
{"title":"Investigation of linear impact energy management and product claims of a novel American football helmet liner component","authors":"David E. Krzeminski, J. Goetz, Andrew P. Janisse, Nadine M. Lippa, Trenton E Gould, J. W. Rawlins, S. Piland","doi":"10.1080/19346182.2012.691508","DOIUrl":null,"url":null,"abstract":"The pursuit to abate sport-related concussion necessitates thorough evaluation of protective technologies and product claims. Therefore, the purpose of this investigation was to: (i) define the linear impulse and compression behavior of the Aware-Flow shock absorber (the primary energy managing component of Xenith X1 football helmet); (ii) characterize resultant force–time curves utilizing compressive loading behavior of foam materials; and (iii) verify and define published findings and product claims. Absorbers (N = 24) from three adult X1 football helmets were impacted at predefined velocities of 1.3, 2.3, 3.0, 4.0, and 4.7 m·s− 1. Linear impulsive forces were ideally managed up to 3.0 m·s− 1 (25.4 J). The foam-filled pad improved impact energy attenuation and increased velocity-specific durability. The leptokurtic region of the 4.0 and 4.7 m·s− 1 impulse curves substantiated a third phase, defined as densification, as demonstrated by the maximum compression height approaching 90%. The adoption of elastic-plastic foam terminology was recommended based upon examination of the shock absorber design and resultant phased force-time curves. Results validated published findings on the prototype thin-walled collapsible air-filled chamber component and substantiated velocity-specific support for Aware-Flow shock absorber product claims.","PeriodicalId":237335,"journal":{"name":"Sports Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19346182.2012.691508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The pursuit to abate sport-related concussion necessitates thorough evaluation of protective technologies and product claims. Therefore, the purpose of this investigation was to: (i) define the linear impulse and compression behavior of the Aware-Flow shock absorber (the primary energy managing component of Xenith X1 football helmet); (ii) characterize resultant force–time curves utilizing compressive loading behavior of foam materials; and (iii) verify and define published findings and product claims. Absorbers (N = 24) from three adult X1 football helmets were impacted at predefined velocities of 1.3, 2.3, 3.0, 4.0, and 4.7 m·s− 1. Linear impulsive forces were ideally managed up to 3.0 m·s− 1 (25.4 J). The foam-filled pad improved impact energy attenuation and increased velocity-specific durability. The leptokurtic region of the 4.0 and 4.7 m·s− 1 impulse curves substantiated a third phase, defined as densification, as demonstrated by the maximum compression height approaching 90%. The adoption of elastic-plastic foam terminology was recommended based upon examination of the shock absorber design and resultant phased force-time curves. Results validated published findings on the prototype thin-walled collapsible air-filled chamber component and substantiated velocity-specific support for Aware-Flow shock absorber product claims.