Classification of Glaucoma in Fundus Images Using Convolutional Neural Network with MobileNet Architecture

Ibnu Da’wan Salim Ubaidah, Y. Fu’adah, Sofia Sa’idah, R. Magdalena, Abel Bima Wiratama, Richard Bina Jadi Simanjuntak
{"title":"Classification of Glaucoma in Fundus Images Using Convolutional Neural Network with MobileNet Architecture","authors":"Ibnu Da’wan Salim Ubaidah, Y. Fu’adah, Sofia Sa’idah, R. Magdalena, Abel Bima Wiratama, Richard Bina Jadi Simanjuntak","doi":"10.1109/ICISIT54091.2022.9872945","DOIUrl":null,"url":null,"abstract":"Glaucoma is a damaged optic nerve due to increased pressure on the eyeball. The cause is a mismatch between eye fluid (aqueous humor) produced and the amount of eye fluid secreted. Ophthalmologists usually detect glaucoma using Cup to Disc Ratio or CDR parameter. However, the calculation of CDR parameters is still done manually, usually done by trained doctors and relatively expensive and limited equipment. This study proposes a system that can classify glaucoma using the Convolutional Neural Network method with MobileNet architecture. MobileNet has two convolution parts: depthwise convolution and pointwise convolution. The function of the Depthwise Convolution is to apply a single convolution filter per input channel, while the function of the pointwise convolution is to build new features by calculating the linear combination of the input channels by applying the 1x1 convolution. The data used comes from rimone-r1 database. Result accuracy of the proposed method reaches 99%. Automated glaucoma classification can assist medical staff in identifying the best treatment for their patients.","PeriodicalId":214014,"journal":{"name":"2022 1st International Conference on Information System & Information Technology (ICISIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on Information System & Information Technology (ICISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIT54091.2022.9872945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is a damaged optic nerve due to increased pressure on the eyeball. The cause is a mismatch between eye fluid (aqueous humor) produced and the amount of eye fluid secreted. Ophthalmologists usually detect glaucoma using Cup to Disc Ratio or CDR parameter. However, the calculation of CDR parameters is still done manually, usually done by trained doctors and relatively expensive and limited equipment. This study proposes a system that can classify glaucoma using the Convolutional Neural Network method with MobileNet architecture. MobileNet has two convolution parts: depthwise convolution and pointwise convolution. The function of the Depthwise Convolution is to apply a single convolution filter per input channel, while the function of the pointwise convolution is to build new features by calculating the linear combination of the input channels by applying the 1x1 convolution. The data used comes from rimone-r1 database. Result accuracy of the proposed method reaches 99%. Automated glaucoma classification can assist medical staff in identifying the best treatment for their patients.
基于MobileNet架构的卷积神经网络在眼底图像青光眼分类中的应用
青光眼是由于眼球压力增加导致视神经受损。原因是产生的眼液(房水)和分泌的眼液量不匹配。眼科医生通常使用杯盘比或CDR参数来检测青光眼。然而,CDR参数的计算仍然是手工完成的,通常由训练有素的医生和相对昂贵和有限的设备完成。本研究提出了一种基于MobileNet架构的卷积神经网络方法对青光眼进行分类的系统。MobileNet有两个卷积部分:深度卷积和点卷积。深度卷积的功能是对每个输入通道应用单个卷积滤波器,而点向卷积的功能是通过应用1x1卷积计算输入通道的线性组合来构建新的特征。所用数据来自rimone-r1数据库。该方法的准确率达到99%。青光眼自动分类可以帮助医务人员确定对患者的最佳治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信