Space-efficient time-series call-path profiling of parallel applications

Z. Szebenyi, F. Wolf, B. Wylie
{"title":"Space-efficient time-series call-path profiling of parallel applications","authors":"Z. Szebenyi, F. Wolf, B. Wylie","doi":"10.1145/1654059.1654097","DOIUrl":null,"url":null,"abstract":"The performance behavior of parallel simulations often changes considerably as the simulation progresses - with potentially process-dependent variations of temporal patterns. While call-path profiling is an established method of linking a performance problem to the context in which it occurs, call paths reveal only little information about the temporal evolution of performance phenomena. However, generating call-path profiles separately for thousands of iterations may exceed available buffer space - especially when the call tree is large and more than one metric is collected. In this paper, we present a runtime approach for the semantic compression of call-path profiles based on incremental clustering of a series of single-iteration profiles that scales in terms of the number of iterations without sacrificing important performance details. Our approach offers low runtime overhead by using only a condensed version of the profile data when calculating distances and accounts for process-dependent variations by making all clustering decisions locally.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The performance behavior of parallel simulations often changes considerably as the simulation progresses - with potentially process-dependent variations of temporal patterns. While call-path profiling is an established method of linking a performance problem to the context in which it occurs, call paths reveal only little information about the temporal evolution of performance phenomena. However, generating call-path profiles separately for thousands of iterations may exceed available buffer space - especially when the call tree is large and more than one metric is collected. In this paper, we present a runtime approach for the semantic compression of call-path profiles based on incremental clustering of a series of single-iteration profiles that scales in terms of the number of iterations without sacrificing important performance details. Our approach offers low runtime overhead by using only a condensed version of the profile data when calculating distances and accounts for process-dependent variations by making all clustering decisions locally.
并行应用程序的空间效率时间序列调用路径分析
并行模拟的性能行为通常随着模拟的进行而发生很大的变化——具有可能与进程相关的时间模式变化。虽然调用路径分析是一种将性能问题与发生性能问题的上下文联系起来的既定方法,但调用路径只能揭示有关性能现象的时间演变的很少信息。然而,为数千次迭代单独生成调用路径概要文件可能会超出可用的缓冲区空间—特别是当调用树很大并且收集了多个指标时。在本文中,我们提出了一种基于一系列单迭代配置文件的增量聚类的调用路径配置文件的语义压缩运行时方法,该方法根据迭代次数进行扩展,而不会牺牲重要的性能细节。我们的方法在计算距离时只使用概要数据的精简版本,并通过在本地做出所有聚类决策来考虑进程相关的变化,从而降低了运行时开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信