SOME COMMON FIXED POINTS THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN MENGER SPACE

A. K. Chaudhary, K. Jha, K. B. Manandhar, D. Mihet
{"title":"SOME COMMON FIXED POINTS THEOREMS FOR OCCASIONALLY WEAKLY COMPATIBLE MAPPINGS IN MENGER SPACE","authors":"A. K. Chaudhary, K. Jha, K. B. Manandhar, D. Mihet","doi":"10.37418/jcsam.4.2.3","DOIUrl":null,"url":null,"abstract":"The fixed point theory as a part of the non-linear analysis is the study of function in metric or non-metric settings. K. Menger in1942 introduced the notion of probabilistic metric space (or statistical space or Menger Space) which is an important generalization of metric space and the study of this space was expanded rapidly with the pioneering work of B. Schweizer and A. Skalar [21] in 1960 and the work of V.M. Sehgal and A.T. Bharucha Reid [23] in 1972. This space broadens in weakly compatible in Menger space by Singh and Jain [24], B.D. Pant et. al [16] and this notion also extend to occasionally weakly compatible by AI. Thapagi and Shahzad [27]. The purpose of this paper is to establish a common fixed point result in Menger space in two pairs and three pairs of mappings by using occasionally weakly compatible mappings. Our first theorem generalizes the theorem of Sharma and Shahu [28] and B. Fisher et.al [29] and both theorems deduce some similar results in the literature.","PeriodicalId":361024,"journal":{"name":"Journal of Computer Science and Applied Mathematics","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/jcsam.4.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fixed point theory as a part of the non-linear analysis is the study of function in metric or non-metric settings. K. Menger in1942 introduced the notion of probabilistic metric space (or statistical space or Menger Space) which is an important generalization of metric space and the study of this space was expanded rapidly with the pioneering work of B. Schweizer and A. Skalar [21] in 1960 and the work of V.M. Sehgal and A.T. Bharucha Reid [23] in 1972. This space broadens in weakly compatible in Menger space by Singh and Jain [24], B.D. Pant et. al [16] and this notion also extend to occasionally weakly compatible by AI. Thapagi and Shahzad [27]. The purpose of this paper is to establish a common fixed point result in Menger space in two pairs and three pairs of mappings by using occasionally weakly compatible mappings. Our first theorem generalizes the theorem of Sharma and Shahu [28] and B. Fisher et.al [29] and both theorems deduce some similar results in the literature.
门格空间中偶弱相容映射的一些公共不动点定理
不动点理论作为非线性分析的一部分,是对函数在度量或非度量环境下的研究。K. Menger于1942年提出了概率度量空间(或称统计空间或Menger空间)的概念,这是度量空间的一个重要推广,随着1960年B. Schweizer和A. Skalar的开创性工作以及1972年V.M. Sehgal和A.T. Bharucha Reid的工作,这一空间的研究得到了迅速的扩展。Singh和Jain等人在Menger空间中扩展了这个空间的弱相容[1],B.D. Pant等人[1],这一概念也被AI扩展到偶尔弱相容。Thapagi和Shahzad b[27]。本文的目的是利用偶弱相容映射建立两对和三对映射在Menger空间上的公共不动点结果。我们的第一个定理推广了Sharma and Shahu[28]和B. Fisher等[29]的定理,这两个定理推导出了文献中一些类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信