Conformal Symmetry and Feynman Integrals

S. Zoia
{"title":"Conformal Symmetry and Feynman Integrals","authors":"S. Zoia","doi":"10.22323/1.303.0037","DOIUrl":null,"url":null,"abstract":"Singularities hidden in the collinear region around an external massless leg may lead to conformal symmetry breaking in otherwise conformally invariant finite loop momentum integrals. For an $\\ell$-loop integral, this mechanism leads to a set of linear $2$nd-order differential equations with a non-homogeneous part. The latter, due to the contact nature of the anomaly in momentum space, is determined by $(\\ell-1)$-loop information. Solving such differential equations in general is an open problem. In the case of 5-particle amplitudes up to two loops, the function space is known, and we can thus follow a bootstrap approach to write down the solution. As a first application of this method, we bootstrap the 6D penta-box integral.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Singularities hidden in the collinear region around an external massless leg may lead to conformal symmetry breaking in otherwise conformally invariant finite loop momentum integrals. For an $\ell$-loop integral, this mechanism leads to a set of linear $2$nd-order differential equations with a non-homogeneous part. The latter, due to the contact nature of the anomaly in momentum space, is determined by $(\ell-1)$-loop information. Solving such differential equations in general is an open problem. In the case of 5-particle amplitudes up to two loops, the function space is known, and we can thus follow a bootstrap approach to write down the solution. As a first application of this method, we bootstrap the 6D penta-box integral.
保形对称与费曼积分
隐藏在外部无质量支腿周围共线区域的奇点可能导致保形不变有限环动量积分中的保形对称性破缺。对于一个$\ well $-环积分,这种机制导致了一组线性$2$二阶微分方程,其中有一个非齐次部分。后者,由于动量空间中异常的接触性质,由$(\ell-1)$-循环信息决定。一般来说,解这样的微分方程是一个开放的问题。在5个粒子振幅最多两个循环的情况下,函数空间是已知的,因此我们可以遵循自举方法来写下解决方案。作为该方法的第一个应用,我们对6D五盒积分进行了自举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信