Trust in the European Central Bank: Using Data Science and predictive Machine Learning Algorithms

A. Skirka, Bogdan Adamyk, O. Adamyk, Mariana Valytska
{"title":"Trust in the European Central Bank: Using Data Science and predictive Machine Learning Algorithms","authors":"A. Skirka, Bogdan Adamyk, O. Adamyk, Mariana Valytska","doi":"10.1109/ACIT49673.2020.9208857","DOIUrl":null,"url":null,"abstract":"Purpose: This empirical scientific research project aims to apply data science and machine learning tools to determine the influence of different factors on the level of trust in the European Central Bank. This research based on the data from the European Commission’s Eurobarometer Survey 89. The paper also aims to represent some predictive analytics techniques to anticipate the level of confidence towards cental bank. Besides that, we build a couple of data visualizing plots, in order to show the main significant impact on the dependent variable. We created the ECB TrustMap Plot, correlation heatmap matrix and Alluvial diagram. Using this plots, we represented changes in network structure over people responses and decision making. Methodology: to calculate the index of trust in the central bank we used Logistic Regressioin, Decision Tree, Random Forrest and Neural Network models. Verify the output and results by using the VIF of the Logistic Model, Cross-validation, Confusion matrix, ROC-curves and accuracy estimations. Main Findings: trust in one-single currency, inflation problems, expectations about the future of EU, indicator of happiness and other indicators has a significant impact on the the level of trust in the central bank.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9208857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: This empirical scientific research project aims to apply data science and machine learning tools to determine the influence of different factors on the level of trust in the European Central Bank. This research based on the data from the European Commission’s Eurobarometer Survey 89. The paper also aims to represent some predictive analytics techniques to anticipate the level of confidence towards cental bank. Besides that, we build a couple of data visualizing plots, in order to show the main significant impact on the dependent variable. We created the ECB TrustMap Plot, correlation heatmap matrix and Alluvial diagram. Using this plots, we represented changes in network structure over people responses and decision making. Methodology: to calculate the index of trust in the central bank we used Logistic Regressioin, Decision Tree, Random Forrest and Neural Network models. Verify the output and results by using the VIF of the Logistic Model, Cross-validation, Confusion matrix, ROC-curves and accuracy estimations. Main Findings: trust in one-single currency, inflation problems, expectations about the future of EU, indicator of happiness and other indicators has a significant impact on the the level of trust in the central bank.
对欧洲中央银行的信任:使用数据科学和预测机器学习算法
目的:本实证科学研究项目旨在应用数据科学和机器学习工具来确定不同因素对欧洲央行信任水平的影响。这项研究基于欧盟委员会1989年欧洲晴雨表调查的数据。本文还旨在代表一些预测分析技术,以预测对中央银行的信心水平。此外,我们建立了几个数据可视化图,以显示对因变量的主要显著影响。我们创建了欧洲央行TrustMap图、相关热图矩阵和冲积图。利用这些图,我们表示了网络结构随人们反应和决策的变化。方法:运用Logistic回归、决策树、随机福雷斯特和神经网络模型计算中央银行的信任指数。通过逻辑模型的VIF、交叉验证、混淆矩阵、roc曲线和精度估计来验证输出和结果。主要发现:对单一货币的信任、通货膨胀问题、对欧盟未来的预期、幸福指数等指标对央行信任水平有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信