A. Jain, S. Tripathy, R. Balasubramanian, Y. Kawazoe
{"title":"Stochastic load flow analysis using artificial neural networks","authors":"A. Jain, S. Tripathy, R. Balasubramanian, Y. Kawazoe","doi":"10.1109/PES.2006.1709368","DOIUrl":null,"url":null,"abstract":"Stochastic load flow is a method for calculation of the effects of inaccuracies in input data on all output quantities through the load flow calculations. This gives a range of values (confidence limit) for each output quantity, which represent the operative condition of the system, to a high degree of probability or confidence. This paper presents a new method for stochastic load flow analysis using artificial neural networks. It is desirable to know the state of the power system in a range with certain confidence, with consideration of input data uncertainties and inaccuracies, on instant-to-instant basis in the fastest possible way. Present method using artificial neural networks to stochastic load flow problem is an effort in that direction and will be a very useful technique in effectively dealing with demand side uncertainties for power system planning and operation. The proposed artificial neural network model has been tested on a sample power system using two different training algorithms and simulation results are presented","PeriodicalId":267582,"journal":{"name":"2006 IEEE Power Engineering Society General Meeting","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Power Engineering Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PES.2006.1709368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Stochastic load flow is a method for calculation of the effects of inaccuracies in input data on all output quantities through the load flow calculations. This gives a range of values (confidence limit) for each output quantity, which represent the operative condition of the system, to a high degree of probability or confidence. This paper presents a new method for stochastic load flow analysis using artificial neural networks. It is desirable to know the state of the power system in a range with certain confidence, with consideration of input data uncertainties and inaccuracies, on instant-to-instant basis in the fastest possible way. Present method using artificial neural networks to stochastic load flow problem is an effort in that direction and will be a very useful technique in effectively dealing with demand side uncertainties for power system planning and operation. The proposed artificial neural network model has been tested on a sample power system using two different training algorithms and simulation results are presented