Bird Songs Recognition Based on Ensemble Extreme Learning Machine

S. Xie, Haifeng Xu, Jiang Liu, Yan Zhang, Danjv Lv
{"title":"Bird Songs Recognition Based on Ensemble Extreme Learning Machine","authors":"S. Xie, Haifeng Xu, Jiang Liu, Yan Zhang, Danjv Lv","doi":"10.1145/3457682.3457750","DOIUrl":null,"url":null,"abstract":"ELM (Extreme Learning Machine) is a random method for Single-hidden layer feedforward neural network construction, and MFCC (Mel-frequency Cepstrum Coefficient) is a kind of feature parameter for speech recognition. Based on Ensemble ELM research on bird songs recognition technology, this paper firstly preprocesses the bird songs data collected by web crawler, then extracts MFCC feature parameters from the songs data, and gets the improved MFCC feature parameters through differential calculation. Finally, Ensemble ELM is used for bird songs classification and recognition. The experimental results show that the Ensemble ELM method can achieve a recognition rate of 90.42% in the classification of 10 kinds of birds.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ELM (Extreme Learning Machine) is a random method for Single-hidden layer feedforward neural network construction, and MFCC (Mel-frequency Cepstrum Coefficient) is a kind of feature parameter for speech recognition. Based on Ensemble ELM research on bird songs recognition technology, this paper firstly preprocesses the bird songs data collected by web crawler, then extracts MFCC feature parameters from the songs data, and gets the improved MFCC feature parameters through differential calculation. Finally, Ensemble ELM is used for bird songs classification and recognition. The experimental results show that the Ensemble ELM method can achieve a recognition rate of 90.42% in the classification of 10 kinds of birds.
基于集成极限学习机的鸟鸣识别
ELM (Extreme Learning Machine)是构建单隐层前馈神经网络的随机方法,MFCC (Mel-frequency倒频谱系数)是语音识别的一种特征参数。基于集成ELM对鸟鸣识别技术的研究,首先对网络爬虫采集的鸟鸣数据进行预处理,然后从鸟鸣数据中提取MFCC特征参数,通过微分计算得到改进的MFCC特征参数。最后,利用集合ELM对鸟鸣进行分类识别。实验结果表明,集成ELM方法对10种鸟类的分类识别率达到90.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信