S. Xie, Haifeng Xu, Jiang Liu, Yan Zhang, Danjv Lv
{"title":"Bird Songs Recognition Based on Ensemble Extreme Learning Machine","authors":"S. Xie, Haifeng Xu, Jiang Liu, Yan Zhang, Danjv Lv","doi":"10.1145/3457682.3457750","DOIUrl":null,"url":null,"abstract":"ELM (Extreme Learning Machine) is a random method for Single-hidden layer feedforward neural network construction, and MFCC (Mel-frequency Cepstrum Coefficient) is a kind of feature parameter for speech recognition. Based on Ensemble ELM research on bird songs recognition technology, this paper firstly preprocesses the bird songs data collected by web crawler, then extracts MFCC feature parameters from the songs data, and gets the improved MFCC feature parameters through differential calculation. Finally, Ensemble ELM is used for bird songs classification and recognition. The experimental results show that the Ensemble ELM method can achieve a recognition rate of 90.42% in the classification of 10 kinds of birds.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ELM (Extreme Learning Machine) is a random method for Single-hidden layer feedforward neural network construction, and MFCC (Mel-frequency Cepstrum Coefficient) is a kind of feature parameter for speech recognition. Based on Ensemble ELM research on bird songs recognition technology, this paper firstly preprocesses the bird songs data collected by web crawler, then extracts MFCC feature parameters from the songs data, and gets the improved MFCC feature parameters through differential calculation. Finally, Ensemble ELM is used for bird songs classification and recognition. The experimental results show that the Ensemble ELM method can achieve a recognition rate of 90.42% in the classification of 10 kinds of birds.
ELM (Extreme Learning Machine)是构建单隐层前馈神经网络的随机方法,MFCC (Mel-frequency倒频谱系数)是语音识别的一种特征参数。基于集成ELM对鸟鸣识别技术的研究,首先对网络爬虫采集的鸟鸣数据进行预处理,然后从鸟鸣数据中提取MFCC特征参数,通过微分计算得到改进的MFCC特征参数。最后,利用集合ELM对鸟鸣进行分类识别。实验结果表明,集成ELM方法对10种鸟类的分类识别率达到90.42%。