{"title":"Stabilization distance between surfaces","authors":"Allison N. Miller, Mark Powell","doi":"10.4171/LEM/65-3/4-4","DOIUrl":null,"url":null,"abstract":"Define the 1-handle stabilization distance between two surfaces properly embedded in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabilizations necessary for the surfaces to become ambiently isotopic. For every nonnegative integer $m$ we find a pair of 2-knots in the 4-sphere whose stabilization distance equals $m$. Next, using a generalized stabilization distance that counts connected sum with arbitrary 2-knots as distance zero, for every nonnegative integer $m$ we exhibit a knot $J_m$ in the 3-sphere with two slice discs in the 4-ball whose generalized stabilization distance equals $m$. We show this using homology of cyclic covers. Finally, we use metabelian twisted homology to show that for each $m$ there exists a knot and pair of slice discs with generalized stabilization distance at least $m$, with the additional property that abelian invariants associated to cyclic covering spaces coincide. This detects different choices of slicing discs corresponding to a fixed metabolising link on a Seifert surface.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/65-3/4-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Define the 1-handle stabilization distance between two surfaces properly embedded in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabilizations necessary for the surfaces to become ambiently isotopic. For every nonnegative integer $m$ we find a pair of 2-knots in the 4-sphere whose stabilization distance equals $m$. Next, using a generalized stabilization distance that counts connected sum with arbitrary 2-knots as distance zero, for every nonnegative integer $m$ we exhibit a knot $J_m$ in the 3-sphere with two slice discs in the 4-ball whose generalized stabilization distance equals $m$. We show this using homology of cyclic covers. Finally, we use metabelian twisted homology to show that for each $m$ there exists a knot and pair of slice discs with generalized stabilization distance at least $m$, with the additional property that abelian invariants associated to cyclic covering spaces coincide. This detects different choices of slicing discs corresponding to a fixed metabolising link on a Seifert surface.