Stabilization distance between surfaces

Allison N. Miller, Mark Powell
{"title":"Stabilization distance between surfaces","authors":"Allison N. Miller, Mark Powell","doi":"10.4171/LEM/65-3/4-4","DOIUrl":null,"url":null,"abstract":"Define the 1-handle stabilization distance between two surfaces properly embedded in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabilizations necessary for the surfaces to become ambiently isotopic. For every nonnegative integer $m$ we find a pair of 2-knots in the 4-sphere whose stabilization distance equals $m$. Next, using a generalized stabilization distance that counts connected sum with arbitrary 2-knots as distance zero, for every nonnegative integer $m$ we exhibit a knot $J_m$ in the 3-sphere with two slice discs in the 4-ball whose generalized stabilization distance equals $m$. We show this using homology of cyclic covers. Finally, we use metabelian twisted homology to show that for each $m$ there exists a knot and pair of slice discs with generalized stabilization distance at least $m$, with the additional property that abelian invariants associated to cyclic covering spaces coincide. This detects different choices of slicing discs corresponding to a fixed metabolising link on a Seifert surface.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/65-3/4-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Define the 1-handle stabilization distance between two surfaces properly embedded in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabilizations necessary for the surfaces to become ambiently isotopic. For every nonnegative integer $m$ we find a pair of 2-knots in the 4-sphere whose stabilization distance equals $m$. Next, using a generalized stabilization distance that counts connected sum with arbitrary 2-knots as distance zero, for every nonnegative integer $m$ we exhibit a knot $J_m$ in the 3-sphere with two slice discs in the 4-ball whose generalized stabilization distance equals $m$. We show this using homology of cyclic covers. Finally, we use metabelian twisted homology to show that for each $m$ there exists a knot and pair of slice discs with generalized stabilization distance at least $m$, with the additional property that abelian invariants associated to cyclic covering spaces coincide. This detects different choices of slicing discs corresponding to a fixed metabolising link on a Seifert surface.
面间稳定距离
定义在固定的四维流形中适当嵌入的两个表面之间的1把手稳定距离为表面成为环境同位素所需的1把手稳定的最小数量。对于每一个非负整数,我们在4球中找到一对稳定距离等于m的2结。接下来,使用广义稳定距离,将任意2节的连通和作为距离0,对于每一个非负整数$m$,我们展示了一个结点$J_m$在3球上,在4球上有两个片盘,其广义稳定距离等于$m$。我们用环盖的同调来证明这一点。最后,我们利用亚贝珥扭同调证明了对于每$m$存在一个结点和一对具有至少$m$广义稳定距离的片盘,并且具有与循环覆盖空间相关的阿贝珥不变量重合的附加性质。这可以检测到不同的切片圆盘对应于Seifert表面上固定的代谢环节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信