MATHEMATICAL MODELING OF THEORY PROBLEMS ELASTICITY BY THE METHOD OF BOUNDARY EQUATIONS

D. N. Nizomov, A.I. Dadaboev
{"title":"MATHEMATICAL MODELING OF THEORY PROBLEMS ELASTICITY BY THE METHOD OF BOUNDARY EQUATIONS","authors":"D. N. Nizomov, A.I. Dadaboev","doi":"10.37538/0039-2383.2022.5.29.32","DOIUrl":null,"url":null,"abstract":"The article describes the features of mathematical modeling of a two-dimensional static problem of elasticity theory by the method of boundary integral equations. The resulting equations make it possible to investigate the stress-strain state of a plane problem under various external influences. As a result of applying the spline approximation of the boundary parameters, the system of integral equations is transformed into a system of linear algebraic equations with unknown displacement and stress components.","PeriodicalId":273885,"journal":{"name":"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS","volume":"856 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37538/0039-2383.2022.5.29.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article describes the features of mathematical modeling of a two-dimensional static problem of elasticity theory by the method of boundary integral equations. The resulting equations make it possible to investigate the stress-strain state of a plane problem under various external influences. As a result of applying the spline approximation of the boundary parameters, the system of integral equations is transformed into a system of linear algebraic equations with unknown displacement and stress components.
弹性理论问题的边界方程数学建模
本文描述了用边界积分方程的方法对弹性理论的二维静态问题进行数学建模的特点。所得到的方程使研究在各种外部影响下平面问题的应力-应变状态成为可能。由于采用边界参数的样条近似,将积分方程组转化为具有未知位移和应力分量的线性代数方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信