Variants of Plane Diameter Completion

P. Golovach, Clément Requilé, D. Thilikos
{"title":"Variants of Plane Diameter Completion","authors":"P. Golovach, Clément Requilé, D. Thilikos","doi":"10.4230/LIPIcs.IPEC.2015.30","DOIUrl":null,"url":null,"abstract":"The {\\sc Plane Diameter Completion} problem asks, given a plane graph $G$ and a positive integer $d$, if it is a spanning subgraph of a plane graph $H$ that has diameter at most $d$. We examine two variants of this problem where the input comes with another parameter $k$. In the first variant, called BPDC, $k$ upper bounds the total number of edges to be added and in the second, called BFPDC, $k$ upper bounds the number of additional edges per face. We prove that both problems are {\\sf NP}-complete, the first even for 3-connected graphs of face-degree at most 4 and the second even when $k=1$ on 3-connected graphs of face-degree at most 5. In this paper we give parameterized algorithms for both problems that run in $O(n^{3})+2^{2^{O((kd)^2\\log d)}}\\cdot n$ steps.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2015.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The {\sc Plane Diameter Completion} problem asks, given a plane graph $G$ and a positive integer $d$, if it is a spanning subgraph of a plane graph $H$ that has diameter at most $d$. We examine two variants of this problem where the input comes with another parameter $k$. In the first variant, called BPDC, $k$ upper bounds the total number of edges to be added and in the second, called BFPDC, $k$ upper bounds the number of additional edges per face. We prove that both problems are {\sf NP}-complete, the first even for 3-connected graphs of face-degree at most 4 and the second even when $k=1$ on 3-connected graphs of face-degree at most 5. In this paper we give parameterized algorithms for both problems that run in $O(n^{3})+2^{2^{O((kd)^2\log d)}}\cdot n$ steps.
平面直径补全的变体
{\sc平面直径补全}问题的问题是,给定一个平面图$G$和一个正整数$d$,如果它是一个平面图$H$的生成子图,其直径最大为$d$。我们研究这个问题的两个变体,其中输入带有另一个参数$k$。在称为BPDC的第一个变体中,$k$上界是要添加的边的总数,在称为BFPDC的第二个变体中,$k$上界是每个面的附加边的数量。我们证明了这两个问题都是{\sf NP}完全的,第一个问题对于面度最多为4的3连通图是偶数,第二个问题对于面度最多为5的3连通图是$k=1$也是偶数。在本文中,我们给出了两个问题的参数化算法,它们运行在$O(n^{3})+2^{2^{O((kd)^2\log d)}}\cdot n$步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信