Modeling Plastic Deformation in Irradiated Materials

N. Kamyshanchenko, V. V. Krasil’nikov, A. Parkhomenko, V. N. Robuk
{"title":"Modeling Plastic Deformation in Irradiated Materials","authors":"N. Kamyshanchenko, V. V. Krasil’nikov, A. Parkhomenko, V. N. Robuk","doi":"10.5772/INTECHOPEN.82635","DOIUrl":null,"url":null,"abstract":"The classification of physical models of plastic deformation localization phenomena in the temperature range including the low-temperature radiation embrittlement effect is done. The new approach for the dislocation channeling mechanism description considering the collective behavior of dislocations and their interaction with radiation defects is proposed. The dislocation collective behavior model in materials irradiated, for example, by reactor radiation including neutron and accompanying gamma radiation is proposed on the basis of the evolution equation for dislocation density taking into account Burgers type nonlinearity. It is shown that the localized structures such as Danilov-Zuev ’ s relaxation waves can be described. The possibility of localization effects (embrittlement) decreasing by the plastic deformation microlevel switching-on is demonstrated in relation with the thermal activated processes. The model describing dose dependence of uniform elongation of irradiated materials is constructed. This model is in good agreement with the experimental data of low-activated alloy based on chromium under ( е , γ ) — beam radiation.","PeriodicalId":159488,"journal":{"name":"Use of Gamma Radiation Techniques in Peaceful Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Use of Gamma Radiation Techniques in Peaceful Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classification of physical models of plastic deformation localization phenomena in the temperature range including the low-temperature radiation embrittlement effect is done. The new approach for the dislocation channeling mechanism description considering the collective behavior of dislocations and their interaction with radiation defects is proposed. The dislocation collective behavior model in materials irradiated, for example, by reactor radiation including neutron and accompanying gamma radiation is proposed on the basis of the evolution equation for dislocation density taking into account Burgers type nonlinearity. It is shown that the localized structures such as Danilov-Zuev ’ s relaxation waves can be described. The possibility of localization effects (embrittlement) decreasing by the plastic deformation microlevel switching-on is demonstrated in relation with the thermal activated processes. The model describing dose dependence of uniform elongation of irradiated materials is constructed. This model is in good agreement with the experimental data of low-activated alloy based on chromium under ( е , γ ) — beam radiation.
辐照材料塑性变形建模
对包括低温辐射脆化效应在内的温度范围内塑性变形局部化现象的物理模型进行了分类。提出了一种考虑位错集体行为及其与辐射缺陷相互作用的位错通道机制描述新方法。在考虑Burgers型非线性的位错密度演化方程的基础上,建立了以中子和伴随伽马辐射为例的反应堆辐射辐照材料的位错集体行为模型。结果表明,局域结构如Danilov-Zuev松弛波是可以被描述的。在热激活过程中,塑性变形微能级的开启有可能降低局部化效应(脆化)。建立了辐照材料均匀伸长的剂量依赖性模型。该模型与(_,γ)束辐射下铬基低活化合金的实验数据吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信