A comparison of distance measures for clustering in speaker diarization

Marcelo de Campos Niero, Alvaro de Lima Veiga Filho, Andre Gustavo Adami
{"title":"A comparison of distance measures for clustering in speaker diarization","authors":"Marcelo de Campos Niero, Alvaro de Lima Veiga Filho, Andre Gustavo Adami","doi":"10.1109/ITS.2014.6947954","DOIUrl":null,"url":null,"abstract":"Speaker diarization consists in answering the question “Who spoke when” for a given conversation in a telephone call, meeting, or broadcast news, without any prior information about neither the audio nor the speakers. Speaker diarization task emerged as a way to optimize audio information retrieval processing by detecting and tracking speech and speaker information. Computationally speaking, the diarization processing occurs through four main steps: feature extraction of signal, speech and non-speech detection, segmentation and clustering. In this work, the clustering step is analyzed by comparing distance measures commonly used in current speaker diarization systems. The results show that pairs of clusters with a large difference in the number of data samples are more sensitive to errors, the number of mixtures of an external model affects the discriminative power of distance measures, and the number of estimated parameters affects the speaker discrimination. All experiments are performed on an excerpt from TIMIT corpus and the diarization task database used in the 2002 NIST Speaker Recognition Evaluation.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Speaker diarization consists in answering the question “Who spoke when” for a given conversation in a telephone call, meeting, or broadcast news, without any prior information about neither the audio nor the speakers. Speaker diarization task emerged as a way to optimize audio information retrieval processing by detecting and tracking speech and speaker information. Computationally speaking, the diarization processing occurs through four main steps: feature extraction of signal, speech and non-speech detection, segmentation and clustering. In this work, the clustering step is analyzed by comparing distance measures commonly used in current speaker diarization systems. The results show that pairs of clusters with a large difference in the number of data samples are more sensitive to errors, the number of mixtures of an external model affects the discriminative power of distance measures, and the number of estimated parameters affects the speaker discrimination. All experiments are performed on an excerpt from TIMIT corpus and the diarization task database used in the 2002 NIST Speaker Recognition Evaluation.
说话人特征化中聚类的距离度量比较
说话人拨号是指在没有任何关于音频或说话人的事先信息的情况下,对电话、会议或广播新闻中的特定对话回答“谁在什么时候说话”的问题。说话人拨号任务是一种通过检测和跟踪语音和说话人信息来优化音频信息检索处理的方法。从计算上讲,特征化处理主要通过四个步骤进行:信号特征提取、语音和非语音检测、分割和聚类。在这项工作中,通过比较当前扬声器拨号系统中常用的距离度量来分析聚类步骤。结果表明,数据样本数量差异较大的聚类对误差更敏感,外部模型的混合数量影响距离测度的判别能力,估计参数的数量影响说话人的判别。所有实验都是在2002年NIST说话人识别评估中使用的TIMIT语料库和词法任务数据库的摘录上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信