Speaker-Independent Visual Speech Recognition with the Inception V3 Model

Timothy Israel Santos, Andrew Abel, N. Wilson, Yan Xu
{"title":"Speaker-Independent Visual Speech Recognition with the Inception V3 Model","authors":"Timothy Israel Santos, Andrew Abel, N. Wilson, Yan Xu","doi":"10.1109/SLT48900.2021.9383540","DOIUrl":null,"url":null,"abstract":"The natural process of understanding speech involves combining auditory and visual cues. CNN based lip reading systems have become very popular in recent years. However, many of these systems consider lipreading to be a black box problem, with limited detailed performance analysis. In this paper, we performed transfer learning by training the Inception v3 CNN model, which has pre-trained weights produced from IMAGENET, with the GRID corpus, delivering good speech recognition results, with 0.61 precision, 0.53 recall, and 0.51 F1-score. The lip reading model was able to automatically learn pertinent features, demonstrated using visualisation, and achieve speaker-independent results comparable to human lip readers on the GRID corpus. We also identify limitations that match those of humans, therefore limiting potential deep learning performance in real world situations.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The natural process of understanding speech involves combining auditory and visual cues. CNN based lip reading systems have become very popular in recent years. However, many of these systems consider lipreading to be a black box problem, with limited detailed performance analysis. In this paper, we performed transfer learning by training the Inception v3 CNN model, which has pre-trained weights produced from IMAGENET, with the GRID corpus, delivering good speech recognition results, with 0.61 precision, 0.53 recall, and 0.51 F1-score. The lip reading model was able to automatically learn pertinent features, demonstrated using visualisation, and achieve speaker-independent results comparable to human lip readers on the GRID corpus. We also identify limitations that match those of humans, therefore limiting potential deep learning performance in real world situations.
基于Inception V3模型的说话人独立视觉语音识别
理解语言的自然过程包括听觉和视觉线索的结合。近年来,基于CNN的唇读系统变得非常流行。然而,这些系统中的许多都认为唇读是一个黑匣子问题,缺乏详细的性能分析。在本文中,我们通过使用GRID语料库训练Inception v3 CNN模型进行迁移学习,该模型具有由IMAGENET产生的预训练权值,获得了良好的语音识别结果,精度为0.61,召回率为0.53,F1-score为0.51。唇读模型能够自动学习相关特征,使用可视化进行演示,并获得与GRID语料库上的人类唇读器相当的独立于说话人的结果。我们还发现了与人类相匹配的局限性,从而限制了在现实世界中潜在的深度学习性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信