Water Quality Prediction Using LS-SVM and Particle Swarm Optimization

Yunrong Xiang, Liang-zhong Jiang
{"title":"Water Quality Prediction Using LS-SVM and Particle Swarm Optimization","authors":"Yunrong Xiang, Liang-zhong Jiang","doi":"10.1109/WKDD.2009.217","DOIUrl":null,"url":null,"abstract":"This paper deals with the study of a water quality prediction model through application of LS-SVM in Liuxi River in Guangzhou. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, least squares support vector machine (LS-SVM) combined with particle swarm optimization (PSO) is used to time series prediction. The LS-SVM can overcome some shortcoming in the Multilayer Perceptron (MLP) and the PSO is used to tune the LS-SVM parameters automatically. It enhances the efficiency and the capability of prediction. Through simulation testing the model shows high efficiency in forecasting the water quality of the Liuxi River.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

This paper deals with the study of a water quality prediction model through application of LS-SVM in Liuxi River in Guangzhou. To overcome the shortcomings of traditional BP algorithm as being slow to converge and easy to reach extreme minimum value, least squares support vector machine (LS-SVM) combined with particle swarm optimization (PSO) is used to time series prediction. The LS-SVM can overcome some shortcoming in the Multilayer Perceptron (MLP) and the PSO is used to tune the LS-SVM parameters automatically. It enhances the efficiency and the capability of prediction. Through simulation testing the model shows high efficiency in forecasting the water quality of the Liuxi River.
基于LS-SVM和粒子群优化的水质预测
本文应用LS-SVM对广州流溪河水质预测模型进行了研究。为克服传统BP算法收敛速度慢、容易达到极值的缺点,将最小二乘支持向量机(LS-SVM)与粒子群优化(PSO)相结合用于时间序列预测。LS-SVM克服了多层感知器(Multilayer Perceptron, MLP)的不足,并利用粒子群算法对LS-SVM参数进行自动调整。提高了预测效率和预测能力。仿真试验表明,该模型对柳溪河水质预报具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信