A hybrid model for en-route driver behavior under real-time information

J. Yu, S. Peeta
{"title":"A hybrid model for en-route driver behavior under real-time information","authors":"J. Yu, S. Peeta","doi":"10.1109/ITSC.2002.1041233","DOIUrl":null,"url":null,"abstract":"The driver en-route route choice problem under real-time information is characterized by subjectively interpreted and/or linguistically expressed data on nonquantitative variables, as well as limited data on some quantitative variables. This paper proposes a hybrid fuzzy logit model to enable the treatment of nonquantitative and quantitative data simultaneously in a single framework to address the problem. Synergistically, its computational efficiency enables real-time deployment in a traffic control framework. The study highlights the appropriateness of using fuzzy variables to address recently identified en-route driver behavioral characteristics under information provision.","PeriodicalId":365722,"journal":{"name":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2002.1041233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The driver en-route route choice problem under real-time information is characterized by subjectively interpreted and/or linguistically expressed data on nonquantitative variables, as well as limited data on some quantitative variables. This paper proposes a hybrid fuzzy logit model to enable the treatment of nonquantitative and quantitative data simultaneously in a single framework to address the problem. Synergistically, its computational efficiency enables real-time deployment in a traffic control framework. The study highlights the appropriateness of using fuzzy variables to address recently identified en-route driver behavioral characteristics under information provision.
实时信息下的道路驾驶员行为混合模型
实时信息下的驾驶员路线选择问题具有非定量变量的主观解释和/或语言表达数据,以及某些定量变量的有限数据的特点。本文提出了一种混合模糊逻辑模型,可以在单一框架中同时处理非定量和定量数据,以解决这一问题。协同,它的计算效率使实时部署在交通控制框架。该研究强调了使用模糊变量来解决信息提供下最近确定的途中驾驶员行为特征的适当性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信