A hybrid learning approach to detecting regime switches in financial markets

Peter Akioyamen, Yifu Tang, Hussien Hussien
{"title":"A hybrid learning approach to detecting regime switches in financial markets","authors":"Peter Akioyamen, Yifu Tang, Hussien Hussien","doi":"10.1145/3383455.3422521","DOIUrl":null,"url":null,"abstract":"Financial markets are of much interest to researchers due to their dynamic and stochastic nature. With their relations to world populations, global economies and asset valuations, understanding, identifying and forecasting trends and regimes are highly important. Attempts have been made to forecast market trends by employing machine learning methodologies, while statistical techniques have been the primary methods used in developing market regime switching models used for trading and hedging. In this paper we present a novel framework for the detection of regime switches within the US financial markets. Principal component analysis is applied for dimensionality reduction and the k-means algorithm is used as a clustering technique. Using a combination of cluster analysis and classification, we identify regimes in financial markets based on publicly available economic data. We display the efficacy of the framework by constructing and assessing the performance of two trading strategies based on detected regimes.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Financial markets are of much interest to researchers due to their dynamic and stochastic nature. With their relations to world populations, global economies and asset valuations, understanding, identifying and forecasting trends and regimes are highly important. Attempts have been made to forecast market trends by employing machine learning methodologies, while statistical techniques have been the primary methods used in developing market regime switching models used for trading and hedging. In this paper we present a novel framework for the detection of regime switches within the US financial markets. Principal component analysis is applied for dimensionality reduction and the k-means algorithm is used as a clustering technique. Using a combination of cluster analysis and classification, we identify regimes in financial markets based on publicly available economic data. We display the efficacy of the framework by constructing and assessing the performance of two trading strategies based on detected regimes.
一种检测金融市场制度转换的混合学习方法
由于金融市场具有动态和随机的特性,研究人员对其非常感兴趣。鉴于它们与世界人口、全球经济和资产估值的关系,理解、识别和预测趋势和制度非常重要。人们尝试通过使用机器学习方法来预测市场趋势,而统计技术一直是开发用于交易和对冲的市场机制转换模型的主要方法。在本文中,我们提出了一种新的框架,用于检测美国金融市场内的制度转换。主成分分析用于降维,k-means算法用于聚类技术。利用聚类分析和分类相结合的方法,我们根据公开的经济数据确定了金融市场的制度。我们通过构建和评估基于检测制度的两种交易策略的绩效来展示框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信