Denoising and Guided Upsampling of Monte Carlo Path Traced Low Resolution Renderings

K. Alpay, A. Akyüz
{"title":"Denoising and Guided Upsampling of Monte Carlo Path Traced Low Resolution Renderings","authors":"K. Alpay, A. Akyüz","doi":"10.1145/3532719.3543250","DOIUrl":null,"url":null,"abstract":"Monte Carlo path tracing generates renderings by estimating the rendering equation using the Monte Carlo method. Studies focus on rendering a noisy image at the original resolution with a low sample per pixel count to decrease the rendering time. Image-space denoising is then applied to produce a visually appealing output. However, denoising process cannot handle the high variance of the noisy image accurately if the sample count is reduced harshly to finish the rendering in a shorter time. We propose a framework that renders the image at a reduced resolution to cast more samples than the harshly lowered sample count in the same time budget. The image is then robustly denoised, and the denoised result is upsampled using original resolution G-buffer of the scene as guidance.","PeriodicalId":289790,"journal":{"name":"ACM SIGGRAPH 2022 Posters","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2022 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3532719.3543250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monte Carlo path tracing generates renderings by estimating the rendering equation using the Monte Carlo method. Studies focus on rendering a noisy image at the original resolution with a low sample per pixel count to decrease the rendering time. Image-space denoising is then applied to produce a visually appealing output. However, denoising process cannot handle the high variance of the noisy image accurately if the sample count is reduced harshly to finish the rendering in a shorter time. We propose a framework that renders the image at a reduced resolution to cast more samples than the harshly lowered sample count in the same time budget. The image is then robustly denoised, and the denoised result is upsampled using original resolution G-buffer of the scene as guidance.
蒙特卡罗路径跟踪低分辨率渲染图的去噪和引导上采样
蒙特卡罗路径跟踪通过使用蒙特卡罗方法估计渲染方程来生成渲染。研究的重点是在原始分辨率下对噪声图像进行低采样,以减少渲染时间。然后应用图像空间去噪以产生视觉上吸引人的输出。然而,为了在较短的时间内完成图像的渲染,在去噪过程中往往会大幅减少样本数量,从而无法准确地处理噪声图像的高方差。我们提出了一个框架,以降低的分辨率呈现图像,以在相同的时间预算中投射更多的样本,而不是急剧降低的样本计数。然后对图像进行鲁棒去噪,并以场景的原始分辨率g缓冲为指导对去噪结果进行上采样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信