Computational optimization for violent scenes detection

Vu Lam, Sang Phan Le, Tien Do, T. Ngo, Duy-Dinh Le, D. Duong
{"title":"Computational optimization for violent scenes detection","authors":"Vu Lam, Sang Phan Le, Tien Do, T. Ngo, Duy-Dinh Le, D. Duong","doi":"10.1109/IC3INA.2016.7863039","DOIUrl":null,"url":null,"abstract":"Violent scenes detection (VSD) can be considered as a specific problem of multimedia event detection. One popular approach to this problem is to employ multiple modals for presentation. By combining complementary modals, it has been shown remarkable improvement in accuracy. But, such an approach also requires high computational cost to process all features globally and locally extracted from static frames, video sequences, audio streams, or deep visual features. In this paper, we address the problem of modal selection (i.e. feature selection) when the computing resource (including both CPU and GPU) is limited. We evaluated possible combinations of features with different specifications of the computing resource. Evaluation results can be used to choose the optimal set of features for high accuracy regarding a pre-selected resource. We conducted experiments on the benchmark dataset MedialEval VSD 2014 (total of 60 hours).","PeriodicalId":225675,"journal":{"name":"2016 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2016.7863039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Violent scenes detection (VSD) can be considered as a specific problem of multimedia event detection. One popular approach to this problem is to employ multiple modals for presentation. By combining complementary modals, it has been shown remarkable improvement in accuracy. But, such an approach also requires high computational cost to process all features globally and locally extracted from static frames, video sequences, audio streams, or deep visual features. In this paper, we address the problem of modal selection (i.e. feature selection) when the computing resource (including both CPU and GPU) is limited. We evaluated possible combinations of features with different specifications of the computing resource. Evaluation results can be used to choose the optimal set of features for high accuracy regarding a pre-selected resource. We conducted experiments on the benchmark dataset MedialEval VSD 2014 (total of 60 hours).
暴力场景检测的计算优化
暴力场景检测(VSD)可以看作是多媒体事件检测中的一个具体问题。解决这个问题的一种流行方法是使用多种模态来表示。通过结合互补情态,其准确性得到了显著提高。但是,这种方法对从静态帧、视频序列、音频流或深度视觉特征中提取的所有特征进行全局和局部处理也需要很高的计算成本。在本文中,我们解决了计算资源(包括CPU和GPU)有限时的模态选择(即特征选择)问题。我们用不同规格的计算资源评估了特征的可能组合。评估结果可用于选择最优的特征集,以获得关于预先选择的资源的高精度。我们在基准数据集MedialEval VSD 2014上进行了实验(共60小时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信