CNN Architecture for Diabetes Classification

P. Nagabushanam, Neema C Jayan, Antony Joel, S. Radha
{"title":"CNN Architecture for Diabetes Classification","authors":"P. Nagabushanam, Neema C Jayan, Antony Joel, S. Radha","doi":"10.1109/ICSPC51351.2021.9451724","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) algorithms deal with only linear data and here comes the necessity of deep learning (DL) algorithms to deal with non-linear input datas. Also, memory requirements and computational costs are addressed by DL algorithms used for classification for medical applications. In this paper, we have used convolutional neural network (CNN) which is the basic deep learning algorithm for 2-way diabetes classification. It helps in attaining better accuracy, kappa coefficient which are premier metrics to decide performance of classification. Simulations are carried out using python.","PeriodicalId":182885,"journal":{"name":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Signal Processing and Communication (ICPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC51351.2021.9451724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Machine Learning (ML) algorithms deal with only linear data and here comes the necessity of deep learning (DL) algorithms to deal with non-linear input datas. Also, memory requirements and computational costs are addressed by DL algorithms used for classification for medical applications. In this paper, we have used convolutional neural network (CNN) which is the basic deep learning algorithm for 2-way diabetes classification. It helps in attaining better accuracy, kappa coefficient which are premier metrics to decide performance of classification. Simulations are carried out using python.
CNN糖尿病分类架构
机器学习(ML)算法只能处理线性数据,因此需要深度学习(DL)算法来处理非线性输入数据。此外,用于医疗应用分类的DL算法还解决了内存需求和计算成本问题。在本文中,我们使用卷积神经网络(CNN)作为双向糖尿病分类的基本深度学习算法。它有助于获得更好的准确性,kappa系数是决定分类性能的首要指标。用python进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信