Object Transportation Using Networked Mobile Manipulators without Force/Torque Sensors

Van-Tam Ngo, Yen‐Chen Liu
{"title":"Object Transportation Using Networked Mobile Manipulators without Force/Torque Sensors","authors":"Van-Tam Ngo, Yen‐Chen Liu","doi":"10.1109/cacs.2018.8606770","DOIUrl":null,"url":null,"abstract":"The use of multiple mobile manipulators (MMs) to perform collaborative object transportation is a promising solution for future industry. However, most existing control laws in this field require sensors to measure interactive force-torque between the transported object and the end-effectors of the robots, which is costly and increasing the system complexity. To overcome this problem, the present study considers the interactive force/torque to be unknown nonlinear functions and estimates them using a wavelet neural network (WNN). In particular, an adaptive-wavelet neural network control law is designed to guarantee trajectory tracking for each robot. Then an output synchronization algorithm is additionally used to coordinate the movement of the network MMs. Stability of the proposed control law is proven theoretically using Lyapunov theorem. Furthermore, the effectiveness of the control law is illustrated by simulations.","PeriodicalId":282633,"journal":{"name":"2018 International Automatic Control Conference (CACS)","volume":"309 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Automatic Control Conference (CACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cacs.2018.8606770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of multiple mobile manipulators (MMs) to perform collaborative object transportation is a promising solution for future industry. However, most existing control laws in this field require sensors to measure interactive force-torque between the transported object and the end-effectors of the robots, which is costly and increasing the system complexity. To overcome this problem, the present study considers the interactive force/torque to be unknown nonlinear functions and estimates them using a wavelet neural network (WNN). In particular, an adaptive-wavelet neural network control law is designed to guarantee trajectory tracking for each robot. Then an output synchronization algorithm is additionally used to coordinate the movement of the network MMs. Stability of the proposed control law is proven theoretically using Lyapunov theorem. Furthermore, the effectiveness of the control law is illustrated by simulations.
无力/扭矩传感器的网络化移动机械手的物体运输
使用多移动机械手(mm)进行协同物体运输是未来工业的一个很有前途的解决方案。然而,该领域现有的大多数控制律都要求传感器测量被运输物体与机器人末端执行器之间的相互作用力-扭矩,这不仅成本高,而且增加了系统的复杂性。为了克服这一问题,本研究将相互作用力/扭矩视为未知的非线性函数,并使用小波神经网络(WNN)对其进行估计。特别设计了一种自适应小波神经网络控制律,以保证每个机器人的轨迹跟踪。然后采用输出同步算法对网络mm的运动进行协调。利用李雅普诺夫定理从理论上证明了所提控制律的稳定性。通过仿真验证了控制律的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信