Integration of foot-mounted inertial sensors into a Bayesian location estimation framework

B. Krach, P. Robertson
{"title":"Integration of foot-mounted inertial sensors into a Bayesian location estimation framework","authors":"B. Krach, P. Robertson","doi":"10.1109/WPNC.2008.4510357","DOIUrl":null,"url":null,"abstract":"An algorithm for integrating foot-mounted inertial sensors into a Bayesian location estimation framework is presented. The proposed integration scheme is based on a cascaded estimation architecture. A lower Kalman filter is used to estimate the step-wise change of position and direction of the foot. These estimates are used in turn as measurements in an upper particle filter, which is able to incorporate nonlinear map-matching techniques. Experimental data is used to verify the proposed algorithm.","PeriodicalId":277539,"journal":{"name":"2008 5th Workshop on Positioning, Navigation and Communication","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2008.4510357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

An algorithm for integrating foot-mounted inertial sensors into a Bayesian location estimation framework is presented. The proposed integration scheme is based on a cascaded estimation architecture. A lower Kalman filter is used to estimate the step-wise change of position and direction of the foot. These estimates are used in turn as measurements in an upper particle filter, which is able to incorporate nonlinear map-matching techniques. Experimental data is used to verify the proposed algorithm.
集成足载惯性传感器的贝叶斯位置估计框架
提出了一种将足载惯性传感器集成到贝叶斯位置估计框架中的算法。所提出的集成方案基于级联估计体系结构。采用低卡尔曼滤波来估计脚的位置和方向的逐步变化。这些估计值依次用作上粒子滤波器的测量值,该滤波器能够结合非线性映射匹配技术。实验数据验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信