Real-Time Quantitative Mineral Analysis (QMA) using Artificial Intelligence (AI) Enabled LIBS Sensor for Bulk Ore Sorting on Mining Conveyors

D. Gagnon, Francis Vanier, J. Haddad, Elton Soares de Lima Filho, Antoine Hamel, C. Padioleau, Francis Boismenu, André Beauchesne, P. Bouchard, Tony Vaillancourt, M. Sabsabi, Alain Blouin, A. Plugatyr, A. Harhira
{"title":"Real-Time Quantitative Mineral Analysis (QMA) using Artificial Intelligence (AI) Enabled LIBS Sensor for Bulk Ore Sorting on Mining Conveyors","authors":"D. Gagnon, Francis Vanier, J. Haddad, Elton Soares de Lima Filho, Antoine Hamel, C. Padioleau, Francis Boismenu, André Beauchesne, P. Bouchard, Tony Vaillancourt, M. Sabsabi, Alain Blouin, A. Plugatyr, A. Harhira","doi":"10.1364/ais.2022.am2f.5","DOIUrl":null,"url":null,"abstract":"Crushing and grinding rocks are energy-intensive. This paper shown the development pathway and the performances of an unprecedented sensor dedicated to run-of-mine ore characterization for bulk sorting to reduce the amount of waste rocks processed.","PeriodicalId":231405,"journal":{"name":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Sensors and Sensing Congress 2022 (AIS, LACSEA, Sensors, ES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ais.2022.am2f.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Crushing and grinding rocks are energy-intensive. This paper shown the development pathway and the performances of an unprecedented sensor dedicated to run-of-mine ore characterization for bulk sorting to reduce the amount of waste rocks processed.
实时定量矿物分析(QMA)使用人工智能(AI)支持的LIBS传感器在采矿输送机上进行散装矿石分选
破碎和研磨岩石是能源密集型的。本文展示了一种前所未有的用于散装分选的原矿特征传感器的发展路径和性能,以减少废石的处理量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信