Utilizing Template Diversity for Fusion Of Face Recognizers

S. Tulyakov, Nishant Sankaran, S. Setlur, V. Govindaraju
{"title":"Utilizing Template Diversity for Fusion Of Face Recognizers","authors":"S. Tulyakov, Nishant Sankaran, S. Setlur, V. Govindaraju","doi":"10.1109/ISBA.2019.8778556","DOIUrl":null,"url":null,"abstract":"If multiple face images are available for the creation of person’s biometric template, some averaging method could be used to combine the feature vectors extracted from each image into a single template feature vector. Resulting average feature vector does not retain the information about image feature vector distribution. In this paper we consider the augmentation of such templates by the information about diversity of constituent face images, e.g. sample standard deviation of image feature vectors. We consider the theoretical model describing the conditions of the usefulness of template diversity measure, and see if such conditions hold in real life templates. We perform our experiments using IARPA face image datasets and deep CNN face recognizers.","PeriodicalId":270033,"journal":{"name":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2019.8778556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

If multiple face images are available for the creation of person’s biometric template, some averaging method could be used to combine the feature vectors extracted from each image into a single template feature vector. Resulting average feature vector does not retain the information about image feature vector distribution. In this paper we consider the augmentation of such templates by the information about diversity of constituent face images, e.g. sample standard deviation of image feature vectors. We consider the theoretical model describing the conditions of the usefulness of template diversity measure, and see if such conditions hold in real life templates. We perform our experiments using IARPA face image datasets and deep CNN face recognizers.
利用模板多样性进行人脸识别融合
如果有多张人脸图像可用于创建人的生物特征模板,可以使用某种平均方法将每张图像提取的特征向量组合成单个模板特征向量。所得的平均特征向量不保留图像特征向量分布的信息。在本文中,我们考虑利用人脸图像组成的多样性信息(如图像特征向量的样本标准差)来增强这些模板。我们考虑描述模板多样性度量有用性条件的理论模型,并看看这些条件是否在现实生活模板中成立。我们使用IARPA人脸图像数据集和深度CNN人脸识别器进行实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信