{"title":"Pointfree topology version of image of real-valued continuous functions","authors":"A. K. Feizabadi, A. Estaji, M. R. Sarpoushi","doi":"10.29252/CGASA.9.1.59","DOIUrl":null,"url":null,"abstract":"Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present the pointfree version of image of real-valued continuous functions in $ {mathcal{R}} L$. In particular, we will introduce the pointfree version of the ring $C_c(X)$. We define a relation from $ {mathcal{R}} L$ into the power set of $mathbb R$, namely overlap. Fundamental properties of this relation are studied. The relation overlap is a pointfree version of the relation defined as $mathop{hbox{Im}} (f) subseteq S$ for every continuous function $f:Xrightarrowmathbb R$ and $ S subseteq mathbb R$.","PeriodicalId":170235,"journal":{"name":"Categories and General Algebraic Structures with Application","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/CGASA.9.1.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $ { mathcal{R}} L$ be the ring of real-valued continuous functions on a frame $L$ as the pointfree version of $C(X)$, the ring of all real-valued continuous functions on a topological space $X$. Since $C_c(X)$ is the largest subring of $C(X)$ whose elements have countable image, this motivates us to present the pointfree version of $C_c(X).$The main aim of this paper is to present the pointfree version of image of real-valued continuous functions in $ {mathcal{R}} L$. In particular, we will introduce the pointfree version of the ring $C_c(X)$. We define a relation from $ {mathcal{R}} L$ into the power set of $mathbb R$, namely overlap. Fundamental properties of this relation are studied. The relation overlap is a pointfree version of the relation defined as $mathop{hbox{Im}} (f) subseteq S$ for every continuous function $f:Xrightarrowmathbb R$ and $ S subseteq mathbb R$.